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We all live our lives dangerously, in a state of jeopardy, at the edge of calamity. You
have discovered that the veil that separates your ordered life from disarray is

wafer-thin. This is the ordinary truth of existence, from which none of us are exempt. In
time we all find out we are not in control. We never were. We never will be.

– Nick Cave









Preface
The Brussels-born, French-Argentinian essayist Julio Cortázar once famously stated
that in quoting others, we cite ourselves. In my case, this certainly rings true for the
quote found at the beginning of this dissertation. The lesson that Nick Cave phrases
so eloquently is one I had to learn time and time again during the course of my PhD
studies: We are not in control, we never were, and will never be. When I set out for a
long and cold commute on a dark October morning nearly six years ago, I had no idea
of the turbulence my PhD journey would lead me through. On that first day as a PhD
candidate, I could not have guessed that I would find myself, less than two years later,
handing in my resignation and ending my career as theoretical physicist. Nor could I
have guessed that afterwards I would leave Belgium to briefly join a biotech start-up
in London and that I would eventually move to Norway to take up a PhD position in
computational neuroscience.

My transition into Norway and neuroscience, which was planned for the spring of
2020, was delayed due to the outbreak of the coronavirus pandemic in Europe. While
waiting for international travel to resume, I joined the open-science COVID Moonshot
project, which aimed to crowdsource novel and patent-free SARS-CoV-2 main protease
(Mpro) inhibitors. Several of the molecules I proposed, based on a prototype version of
a molecular quality-diversity algorithm, were selected by the project for synthesis and
potency tests against Mpro. The algorithm was completed and published, together with
a discussion of the concepts behind it, in the first paper of this dissertation, Illuminating
Elite Patches of Chemical Space. About a year and a half after this first paper, I
wrote a single-author, follow-up paper, Graph-Based Molecular Pareto Optimisation,
in response to questions from the community regarding the importance of chemical
diversity in multi-objective molecular optimisation.

After the lifting of travel restrictions at the end of the first wave of the coronavirus
pandemic in Europe, around July 2020, I managed to move to Norway. I finally started
my PhD studies with Prof. Dr. Gaute Einevoll as part of the University of Oslo Life
Science Convergence Environment 4MENT, which studies the molecular mechanisms
underlying severe mental disorders such as schizophrenia and bipolar disorder. After
many minor and somewhat diffuse contributions to the 4MENT collaboration throughout
2020 and 2021, we settled on focussing our efforts on accelerating complex and large-
scale, biophysically-detailed neuron simulations in 2022. Specifically, we directed
our attention to distilling the underlying differential equations into easier-to-evaluate
artificial neural network models. The final results of this endeavour are currently still
being collected and are presented here in a preliminary manuscript, Multi-task Learning
of Biophysically-Detailed Neuron Models.

Jonas Verhellen
Oslo, April 2023
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Abstracts
In English

The study of severe mental disorders, such as schizophrenia and bipolar disorder, is no
longer only reserved for doctors or scientists in lab coats. Computational simulations are
now commonplace in the (bio)medical sciences and are used to support the development
of novel pharmacological interventions or to create detailed simulations of disease
models. In this dissertation, we explain the current understanding of the molecular
underpinnings of severe mental disorders and describe how computational simulations
can play a role in the development of better treatment of these disorders. We specifically
chronicle the development of two novel computational tools for the generation of drug-
like molecules and one for the accelerated simulation of biophysically-detailed neuron
models. The development of these tools relies on recent scientific advancements in the
fields of quality-diversity algorithms and multi-task deep learning.

Schizophrenia and bipolar disorder are – in essence – disorders of the mind and hence
they are inevitably linked to dysfunction of the brain and the central nervous system. The
success of neuroscience in providing insights into the basic neurobiology of perception,
cognition, memory, and to some extent emotions, paved the way for the scientific study
of the biomolecular mechanisms of severe mental disorders. Unfortunately, for severe
mental disorders neither the risk factors that contribute to disease development (known
as the disease aetiology) nor the ways in which these risk factors lead to disease (known
as the disease pathogenesis) are fully known. However, based on a series of modern and
large-scale genetic screenings, dysfunction of glutamatergic neurotransmission, aberrant
neuron morphology, faulty ubiquitination signalling and altered calcium ion dynamics
can be implicated in these disorders.

In addition to our limited molecular understanding of schizophrenia and bipolar
disorder, our current pharmacological treatment options are also limited and only
effective for a fraction of the patients. To develop novel medication, the massive
space of potentially pharmacologically active molecules has to be searched for the few
compounds that have the right protein-interaction profile and physicochemical properties.
A whole array of deep learning algorithms for generating drug molecules have been
released in the past years. However, none of them managed to truly outperform the much
more classical genetic algorithms. In this dissertation, we improved upon a well-known
genetic algorithm for molecular optimisation by introducing chemical diversity through
quality-diversity techniques borrowed from the field of soft robotics. In a follow-up
project, we showed that in multi-objective optimisation, objective space diversity is
more important than chemical diversity when trying to discover a Pareto front.

To facilitate better and larger simulations of networks of biophysically-detailed
neuron models, recent academic interest has turned to deep learning. By distilling the
complicated differential equations governing a biophysically-detailed neuron model into
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Abstracts

an easier-to-evaluate artificial neural network, network simulations can be accelerated
up to five orders of magnitude. Current distillation approaches only predict neuronal
output (membrane potential, outgoing spikes,. . . ) in a limited number of compartments.
Ongoing work, presented in this dissertation, aims to explore state-of-the-art multi-task
deep learning architectures to expand predictions of the membrane potential to all
compartments of a biophysically-detailed neuron model. In addition to providing a
stringent test of these architectures – membrane potential values are highly non-gaussian
– this approach is also expected to be useful in the context of creating significantly faster
local field potential simulations.

In addition to being a series of potentially useful tools for future research regarding
the treatment and study of severe mental disorders, the three research projects presented
here are connected through their use of computational diversity as a resource. Both
research projects in computational drug design explicitly force candidate molecules to
be diverse in either a chemical space (single objective optimisation) or in optimisation
space (multiple objective optimisation). The research project focussing on the use
of multi-task deep learning explores the use of neural architectures that enforce or
encourage diversity in their internal representations. Throughout these projects, we
explored many different ways to quantify diversity and noted a current lack of any unified
framework to measure diversity of computational objects. With academic interest in
diversity techniques increasing in many branches of the computational sciences, we look
forward to seeing how the study of computational diversity evolves in the near future.

På Norsk

Studiet av alvorlige psykiske lidelsersom schizofreni og bipolar lidelse, er ikke lenger
kun forbeholdt leger eller forskere i hvite laboratoriefrakker. Numeriske simuleringer
er nå vanlig å ta i bruk i de (bio)medisinske vitenskapene og kan styrke utvikling av
nye farmakologiske intervensjoner eller brukes til å lage detaljerte simuleringer av
sykdomsmodeller. I denne avhandlingen forklarer vi den nåværende forståelsen av den
molekylære bakgrunnen til alvorlige psykiske lidelser og vi forklarer hvordan numeriske
simuleringer kan spille en rolle i utviklingen av bedre behandling av disse lidelsene.
Vi går spesielt gjennom utviklingen av to nye simuleringsverktøy, et verktøy for
syntetisering av medikamentlignende molekyler og et verktøy for akselerert simulering
av biofysisk detaljerte nevronmodeller. Utviklingen av disse verktøyene er avhengig
av nyere vitenskapelige fremskritt innen kvalitetsmangfold-algoritmer samt dyp læring
med flere oppgaver.

Schizofreni og bipolar lidelse er, i hovedsak, sinnslidelser, og derfor er de uunngåelig
knyttet til funksjonssvikt i hjernen og sentralnervesystemet. Nevrovitenskapens suksess
med å gi innsikt i den grunnleggende nevrobiologien bak persepsjon, kognisjon,
hukommelse og, til en viss grad, følelser, har banet vei for den vitenskapelige studien
av biomolekylære mekanismer som ligger til grunn for alvorlige psykiske lidelser.
For alvorlige psykiske lidelser er dessverre verken risikofaktorene som bidrar til
sykdomsutvikling (kjent som etiologi) eller måtene disse faktorene fører til sykdom
på (kjent som patogenesen) fullt ut forstått. Basert på moderne, storskala genetisk
testing kan det imidlertid vise seg at dysfunksjon i glutamatergisk nevrotransmisjon,
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avvikende nevronmorfologi, feil i ubiquitin-signalering og endret kalsiumion-dynamikk
er involvert i disse lidelsene.

I tillegg til vår begrensede molekylære fo, rståelse av schizofreni og bipolar
lidelse, er våre nåværende farmakologiske behandlingsalternativer også fåtallige og
kun effektive for en brøkdel av pasientene. For å utvikle ny medisin, må det i det
enorme utvalget av potensielle farmakologisk aktive stoffer søkes etter de få molekylene
som har riktig protein-interaksjonsprofil og fysiokjemiske egenskaper. En hel rekke
dyplæringsalgoritmer for å syntetisere nye legemidler har blitt utgitt de siste årene.
Imidlertid har ingen klart å overgå de mer klassiske genetiske algoritmene. I denne
avhandlingen forbedret vi en velkjent genetisk algoritme for molekylær optimalisering
ved å introdusere kjemisk mangfold gjennom kvalitets- og mangfoldsteknikker lånt
fra feltet myk robotikk. I et oppfølgingsprosjekt viste vi deretter at ved multi-objektiv
optimalisering er diversitet i objektiv-rommet viktigere enn kjemisk mangfold når man
prøver å oppdage en Pareto-front.

For å legge til rette for bedre og større simuleringer av nettverk av biofysisk de-
taljerte nevronmodeller, har akademisk interesse nylig vendt seg til dyp læring. Ved
å destillere de kompliserte differensialligningene som ligger til grunn for en biofy-
sisk detaljert nevronmodell til et kunstig nevralt nettverk som er lettere å evaluere,kan
nettverkssimuleringene akselereres med opptil fem størrelsesordener. Nåværende tilnær-
minger kan bare forutsi nevralt output(membranpotensial, utgående aksjonspotensial,
. . . ) i et begrenset antall kompartementer Pågående arbeid, presentert i denne avhan-
dlingen, tar sikte på å utforske toppmoderne fleroppgavers dyplæringsarkitekturer for å
utvide prediksjon av membranpotensialet til alle kompartementer i en biofysisk detaljert
nevronmodell. I tillegg til å gi en stringent test av disse arkitekturene - membranpoten-
sialverdier er svært ikke-gaussiske - forventes denne tilnærmingen også å være nyttig
for å lage betydelig raskere simuleringer av lokalfeltpotensialer.

I tillegg til å være en serie potensielt nyttige verktøy for fremtidig forskning på
behandling og i studiet av alvorlige psykiske lidelser, så er de tre forskningsprosjektene
som presenteres her knyttet sammen gjennom deres utnyttelse av beregningsmessig
mangfold som ressurs. Begge forskningsprosjekter innen simuleringbasert legemid-
deldesign tvinger kandidatmolekyler til å være diverse enten i det kjemisk rommet
(singel-objektiv optimalisering) eller i et optimaliseringsrom (multi-objektiv optimalis-
ering). Forskningsprosjektet som omhandler fleroppgavers dyplæring utforsker bruken
av nevrale arkitekturer som enten tvinger eller oppfordrer til mangfold i deres interne
representasjoner. Gjennom disse prosjektene undersøkte vi mange forskjellige måter
å kvantifisere mangfold på, og bemerket en mangel på et enhetlig rammeverk for å
måle mangfold av beregningsobjekter. Med en økende akademisk interesse for mang-
foldsteknikker i mange grener av beregningsvitenskap, ser vi frem til å følge med på
hvordan studiet av beregningsmessig mangfold utvikler seg i nær fremtid.

Translated by the Asbestkontoret hive mind.
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Chapter 1

Introduction and Motivation
Each of our minds is the complex biological outcome of every sensation that has ever run
through our bodies, the product of all the ways we have ever been loved or disappointed,
the aggregate of each time we have been hurt or celebrated. To adapt to the changing
circumstances and various experiences of life, our brains reorganise themselves around
underlying genetic and epigentic scaffolds. In health, this extraordinary mental flexibility
– a hallmark of human resiliency – provides us with a wide playing field, but in disease
we find ourselves traversing a narrow path: precariously balancing our own needs with
those induced by a pathogen, dangerous genetic mutation or misplaced methyl tag. If
that path becomes unbearably narrow and our internal balance impossible to maintain,
we stray beyond the regular human experience and into the poorly understood realms of
psychiatric disorder.

Depression, anxiety, and compulsive-obsessive behaviour have all been observed
in the animal kingdom, but the severest mental disorders, such as schizophrenia and
bipolar disorder, remain exclusive to humanity. These disorders have a unique potential
for destruction, as they often affect personal relationships and social activities as well
as the general health of those suffering from these diseases. Yet, at some recent point
in humanity’s 3.5 billion year evolutionary history, a predisposition for these disorders
was instilled into our genes. Understanding the molecular origins of mental disorders is
therefore not only of importance for the development of highly necessary novel clinical
interventions, but it is also a unique opportunity to unravel a part of our shared and
complex evolutionary backstory.

In the first section of this introductionary chapter, we provide the reader with an
overview of the pathophysiology of schizophrenia and bipolar disorder and introduce
them to the intricate and poorly understood network of molecular mechanisms involved.
Having set the stage, we highlight the importance and difficulty of pharmacological
intervention in severe mental disorders and then turn our attention to the specific
scientific challenges addressed in this dissertation. We discuss the impact of computer
simulations on drug design and the use of biophysically-detailed neuron simulations,
and showcase the importance of both of these topics in the context of studying and
treating severe mental disorders. Combined, these discussions provide the necessary
context and motivation for the novel computational tools presented in the next chapter.

Severe Mental Disorders: Schizophrenia and Bipolar Disorder

Mental disorders are characterised [1] by a combination of significant disturbances in a
person’s behaviour, cognitive and daily functioning, or emotional regulation. Effective
prevention and treatment options for some of the milder mental disorders exist [2, 3]
but patient’s access to effective and affordable care is unfortunately often limited [4].
For those patients that suffer from severe mental disorders, including schizophrenia and
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1. Introduction and Motivation

Figure 1.1: Severe Mental Disorders Affect The Entire Body. Severe mental
disorders are characterised by their detrimental effect on brain functioning (shown
in blue), but patients suffering from these diseases are also disproportionately affected
by a range of other diseases (shown in red). For each cluster of diseases comorbid with
schizophrenia or bipolar disorder, we highlight a representative organ and provide the
95% confidence interval mortality risk ratio [8] in incident and prevalent schizophrenia
cases versus the general population.

bipolar disorder, effective curative or prophylactic treatment is generally non-existent
or deeply insufficient [5]. Despite decades of research, people suffering from severe
mental health disorders face an average 10 to 15 year reduction in life expectancy [6–8],
in part due to current medical limitations and the severity of symptoms, see Figure 1.1.
At the same time, stigma, discrimination, and human rights violations targeting patients
with mental disorders, severe or otherwise, remain painfully common [9].

Schizophrenia [10] and bipolar disorder [11] manifest as a heterogeneous combi-
nation of positive (hallucinations, delusions, mania), negative (depression, anhedonia),
and cognitive symptoms. Schizophrenia is mostly a psychotic disorder, characterised by
hallucinations and psychosis, while bipolar disorder is primary diagnosed as a mood
disorder, characterised by a recurring pattern of sequential periods of mania and depres-
sion. Combinations of psychosis and fluctuating mood disturbances in the same patient
are grouped together under the diagnostic umbrella term schizoaffective disorder [12].

2



Unfortunately, due to the complexity of these diseases, patients diagnosed with the same
mental disorder may not share any clinical symptoms [13] and overlapping symptoms
may originate from different disorders [14], yet it remains clinically practical to make
these diagnostic distinctions.

Whereas there is clear evidence that external factors play an important role in disease
etiology, schizophrenia and bipolar disorder have been shown to have a heritability of
around 70% [15]. This high level of heritability indicates that genetic variation creates
an important biological foundation upon which mental disorders can develop. Modern
genetic studies, making use of large patient cohorts and high-throughput screening
techniques, have uncovered an extensive and partially overlapping genetic basis for
schizophrenia and bipolar disorder [16], in line with their strong clinical overlap. Despite
the impact on life expectancy and quality of life, severe mental disorders have managed
to spread widely throughout the general population. The worldwide mean lifetime
prevalence of schizophrenia and bipolar disorder has been estimated to be around 1%
and 2%, respectively [17, 18], although large regional differences in prevalence rates
have been noted.

Schizophrenia and Bipolar Disorder as Developmental Disorders
In contrast to most other neurological diseases, schizophrenia and bipolar disorder
typically arise in early adolescence [19], and are presumed to be triggered by aberrations
in brain development and maturation [20]. These aberrations are thought to be due
to an interplay of genetic, epigenetic, environmental, and developmental factors, see
Figure 1.2. A typical case of schizophrenia starts with a latent phase in childhood when
sub-threshold psychotic symptoms and developmental delays might become apparent
but often these go unnoticed [21]. The initial phase of schizophrenia is followed by a
first episode of psychosis, typically in adolescence or young adulthood [22]. About 10%
to 15% of patients recover after this first episode, a similar proportion of patients suffer
from an unremitting and treatment-resistant form of schizophrenia, and the remainder
develops a chronic and fluctuating relapse/remission disease pattern [23].

Each of the distinct phases in the progression of schizophrenia can be matched to a
period in brain development [22, 23], underscoring the importance of neurodevelopment
in psychiatric disorders. For instance, the initial, latent stage of schizophrenia mostly
occurs during the years of early brain formation. Whereas the first episode of
psychosis typically happens right after or in the midst of a period of intense brain
reorganisation [24] and sexual maturation marked by adolescence, the chronic aspects of
schizophrenia happen throughout life’s later decades of brain maintenance. Brain
formation and reorganisation are the result of an interplay of neurogenesis [25],
synaptogenesis [26], gliogenesis [27], synaptic pruning [28], dendritic arborisation [29],
cortical myelination [30], neuronal proliferation [31] and neuronal differentiation [32].
Dysfunction of any or all of these complex biological mechanisms is a potential suspect
in the pathophysiology of schizophrenia and a plausible target for clinical intervention.

Early indications of the importance of neurodevelopment in schizophrenia arose
from various epidemiological studies [33–35], linking prenatal adverse events such
as maternal infection [36], malnutrition [37] or smoking [38] to later clinical
manifestations of schizophrenia in offspring. Follow-up epidemiological studies also
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1. Introduction and Motivation

Figure 1.2: Typical Onset and Progression of Schizophrenia. Symptom intensity of
schizophrenia (blue line), risk factors (red boxes), and disease progression milestones
(white boxes) in function of age. A window of opportunity for altering disease course
before the first episode of psychosis (shown in green) has gained significant academic
interest. Figure based on Figures 1.a and 1.b in Altering the Course of Schizophrenia:
Progress and Perspectives [23].

discovered statistical correlations to limited delays in the achievement of developmental
milestones [39–41] regarding motor, speech, and cognitive function. The exact
nature of the relationship between cognitive deficits and schizophrenia is a source
of debate [42–44], and it remains unclear how minor developmental deficits in early life
can transform to a severe psychotic illness later in life. The period of brain reorganisation
during which the first episode of psychosis occurs is suspected to be involved in this
transition. Although less strongly supported, viral infections in childhood have also
been statistically linked to an increased risk of developing schizophrenia [45, 46].

A recent study of gene regulation in brain formation based on three-dimensional
chromatin interaction profiles derived from human brain tissue, compared regulatory
patterns for nine brain disorders: five psychiatric disorders and four neurodegenerative
disorders [47]. This study indicates that genes involved in psychiatric disorders are
preferentially expressed prenatally, and in neurons, in stark contrast to neurodegenerative
disorders which show increasing genetic expression with age and affect a more diverse
range of brain cell types. In addition, post-mortem DNA methylation analyses of fetal,
post-natal, and adult human brain samples indicate that a significant fraction of the genes
implicated in schizophrenia show preferential expression during fetal development [48,

4



49], further underscoring the importance of early development in schizophrenia.
Neurodevelopmental disturbances are less consistently implicated in bipolar

disorders [50]. This difference is most likely due to the comparatively strong patient
heterogeneity in bipolar disorder compared to schizophrenia [51, 52]. A substantial
subset of patients with bipolar disorder exhibits sub-threshold manifestations of mood
disorders before full disease onset, similar to the progression seen in schizophrenia
patients, but it remains unclear if this observation extends to the entire patient
population [53]. Generalisations from one subgroup of patients with bipolar disorder
to another subgroup are notoriously difficult. Specifically, the subsets of early-onset
patients or those diagnosed with schizoaffective disorder display clinical features and
treatment outcomes that differ significantly from other diagnostic subgroups [54–56].

Given that the underlying neurodevelopmental aspects of schizophrenia and bipolar
disorder typically start many years before diagnosis, identification of at-risk individuals
in or before the latent stages of these diseases is increasingly seen as clinically
important [57–59]. Large personal and societal costs could potentially be avoided
through early detection and intervention. In the most ideal case, transition into
psychosis could be halted by tailor-made clinical, pharmacological and psychosocial
interventions [23]. To achieve this (or any other satisfactory) level of alteration in
disease progression, better patient identification and stratification based on advanced
multi-modal diagnostics needs to be combined with novel pharmacological options, all
of which relies on a more precise molecular understanding of these disorders.

The Genetic Architecture of Schizophrenia and Bipolar Disorder
Determining the genetic architecture of any polygenic trait, such as schizophrenia
and bipolar disorder, involves the testing of allele frequency differences in hundred
of thousands of genetic variants across the human genome, in a process known as
genome-wide association studies (GWASs) [60]. Whereas GWASs can be used to
track down copy-number-variants (CNVs) or other sequence variations, they are most
often employed to study common and small-scale genetic variations, known as single-
nucleotide polymorphisms (SNPs), that affect a single base pair in a gene. The statistical
association between genetic variants and diseases can be used for a range of downstream
applications. For instance, the implication of pro-inflammatory pathways in a Crohn’s
disease GWAS have been used to support and justify clinical trials of drugs targeting
these pathways [61, 62].

Because sequencing the whole genome of an individual is costly, only the most
informative SNPs are considered in GWASs. Representative and pre-selected SNPs are
used to discover genetic associations with a trait or disease [64]. Determining which
genetic variants are causal to a trait remains challenging. Out of the more than 3500
GWASs that have been conducted so far, most have indicated that polygenic traits
are influenced by many thousands of variants, each of them individually conferring
little risk [65]. Similarly for schizophrenia and bipolar disorder: up to now 287
common risk loci have been identified for schizophrenia [66], and 64 for bipolar
disorder [67]. To complicate matters, common genetic variants found in these GWASs
only account for approximately 20% and 24% of the disease liability of bipolar disorder
and schizophrenia, respectively.
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1. Introduction and Motivation

Figure 1.3: Frequency Spectrum of Genetic Schizophrenia Risk Factors. Signifi-
cant genetic associations for schizophrenia from recent large scale genetic studies are
shown (top), together with their impact on genetic material (bottom): common variants
(blue), protein truncating variants (red), and copy number variations (green). Data points
were manually reproduced from Figure 6.a in Rare Coding Variants in Ten Genes Confer
Substantial Risk for Schizophrenia [63] for illustrative purposes.

Common variants associated with schizophrenia show a preferential expression in
neurons and seem to implicate multiple pathways that target synaptic organisation
and function. Indeed, several of the genes with common variants implicated in
schizophrenia encode important neurotransmitter receptors or ion channels. These genes
include voltage-gated calcium and chloride channels (CACNA1C and CLCN3) [68],
glutamatergic (GRM1, GRM3, GRIA1, and GRIN2A) [69] and dopaminergic receptors
(DRD2) [70] as well as the serine racemase enzyme (SRR) [71] which plays a role
in the biosynthesis of an allosteric N-methyl-D-aspartate (NMDA) receptor ligand.
Other GWAS implicated genes for schizophrenia include a gene that encodes a
sarcoplasmic/endoplasmic reticulum calcium pump (ATP2A2) [72, 73], and genes
involved in synaptic organisation and differentiation (DLGAP2, LRRC4B, GPM6A, and
PAK6) [74].
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The most significantly associated common variant for schizophrenia resides in the
C4A gene [75, 76]. C4A is a component of the major histocompatibility complex
(MHC) [77] which is an essential part of the adaptive immune system. Hence C4A has
caused significant interest in the role of inflammation and the immune system in severe
mental disorders [78–80]. Among the 64 genes implicated in bipolar disorder, seventeen
are also implicated in schizophrenia. Surprisingly, unlike in schizophrenia, the MHC
has been identified as a genome-wide significant risk factor for bipolar disorder through
a common missense variant in the immune checkpoint gene BTN2A1 [81] but not
through the influence of the C4A gene. Other common variants associated with bipolar
disorder are voltage-gated calcium and potassium channel encoding genes (CACNB2
and KCNB1) [68] and a serotonin receptor gene (HTR6) [82].

Due to the limited risk contribution of common variants to schizophrenia and bipolar
disorder, a substantial genetic contribution to disease risk might reasonably be expected
to be found in other parts of the allele frequency spectrum [83], see Figure 1.3. Large-
effect risk variants with low frequency in the population, often called rare variants, are
suspected to play an important role. Several rare CNVs have been robustly associated
with schizophrenia [84], most remarkably the 22q11.2 [85] and the 2p16.3 [86] deletions.
The former is known to cause dramatically higher rates of schizophrenia, making it the
single most important genetic risk factor for schizophrenia currently known, while the
latter is notable because it only contains a single gene: the NRXN1 gene which encodes
the neurexin 1 protein. Neurexin 1 is abundant in GABAergic synapses, where it controls
synaptic formation and transmitter release. CNVs associated with schizophrenia have a
high pleiotropy [87], indicating a relationship with other disorders. Remarkably, bipolar
disorder associated CNVs only seem to contribute to schizoaffective cases [88].

Analysis of rare coding variants in severe mental disorders is a powerful comple-
mentary approach to the study of common variants and CNVs. Exome studies [89],
which only consider variations in the protein-coding regions of the genome, and proband
studies [90], which search for de novo mutations in affected family members compared
to their healthy ancestors or siblings, are typically conducted with higher sensitivity
than GWASs. The Schizophrenia Exome Sequencing Meta-Analysis (SCHEMA) con-
sortium [63] has aggregated and harmonised the exome sequences of nearly 25.000
schizophrenia patients and close to 100.000 healthy controls. This global meta-analysis
effort has led to the identification of ten genes with rare, protein-truncating variants that
carry a substantial risk with respect to schizophrenia (SETDA1, CUL1, XPO7, TRIO,
CACNA1G, SP4, GRIA3, GRIN2A, HERC1, and RB1CC1).

The BipEx collaboration [91] performed a whole-exome meta-analysis of bipolar
disorder, in a study comprising nearly 14.000 patients and a similar number of healthy
controls. Despite the sizeable patient cohort, the BipEx study did not observe a
single risk gene with exome-wide significance for bipolar disorder. However, several
risk genes identified in the SCHEMA consortium analysis for schizophrenia were
found to be significantly enriched for rare variants associated with bipolar disorder.
Combining the data from the SCHEMA and BipEx studies revealed strong evidence
that haploinsufficiency in the AKAP11 gene confers risk for the development of severe
mental disorders. The AKAP-11 protein [92] is suspected to interact with the GSK3B
protein, which is assumed to be the main target of lithium therapy [93–95]. The overlap
in risk for schizophrenia and bipolar disorder is hence clearly not limited to common
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1. Introduction and Motivation

variants, further corroborating the clinical resemblances seen between the two disorders.

Molecular Mechanisms Underlying Schizophrenia and Bipolar
Disorder
Uncovering the underlying biological mechanisms of the genetic variants associated
with severe mental disorders, most of which only have a small effect, poses a serious
challenge [96]. Despite the success in risk gene discovery through GWASs, the
implicated common variants are often non-coding [97] or act through a regulatory
function [98], making their interpretation difficult. CNVs on the other hand, each affect
hundreds of kilobases of genome, making it hard to specify the mechanism by which
they confer disease risk [99]. Most rare variants are hard to interpret correctly with
the exception of rare coding or protein-truncating variants. Protein-truncating variants
have been linked to loss-of-function for the affected protein, although in some limited
cases gain-of-function has also been observed [100]. Because interpreting results from
large-scale genetic screening is so challenging, there is no general consensus on the
molecular mechanisms underlying severe mental disorders.

To create some sense of order in the chaos, we present an overview of a select
amount of genetic sectors consistently implicated in schizophrenia through independent
screening techniques, see Figure 1.4. In addition to highlighting several of the genes
involved and discussing the presumed effects of mutations in these genes, we also
discuss pre-clinical and clinical support for the presented sectors. Remarkably, as
discussed later, dopamine dysregulation is not one of the sectors that is systematically
implied in genetic screenings. Whereas this overview is not (and cannot possibly be) an
exhaustive list of mechanisms involved in severe mental disorders, it aims to provide
a solid and conservative foundation for further scientific discussions on the nature of
these diseases. In addition, this overview could be used as a list of possible targets for
pharmacological interventions. As a starting point for this overview, we used the ten
genes with protein-truncating variants implicated in schizophrenia by the SCHEMA
consortium.

Glutamatergic Neurotransmission
Excessive release of glutamate – the primary excitatory neurotransmitter of
the human brain – is hypothesised to be at least partially responsible for
psychotic symptoms and cognitive impairment in schizophrenia [101, 102].
Clinical administration of antagonists which bind to the phencyclidine pocket of
NMDA receptors, an important type of glutamate receptors, have been shown to
induce positive, negative, and cognitive symptoms of schizophrenia in healthy
subjects [103, 104]. Crucially, the behavioural effects of these NMDA receptor
antagonists persist even in the absence of aberrant dopamine activity [105].
Together, these results provide strong support for disruption of glutamatergic
neurotransmission as a fundamental component of schizophrenia pathophysiology.

The different genetic screening efforts discussed previously, have implicated
components of glutamate receptors, such as GRIA3 and GRIN2A, as well as
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proteins indirectly involved in facilitating glutamatergic neurotransmission. For
instance, the transcription factor SP4 gene has been associated with schizophrenia
through the SCHEMA meta-analysis, and experimentally observed to cause a
dramatically decreased expression of GRIN1, a glutamate receptor component,
in mice [106]. Similarly, SETD1A knockout in post-synaptic neurons has been
shown to reduce glutamate release probability [107] and in-vitro studies of rodent
neurons have shown that TRIO affects glutamatergic neurotransmission [108].
In addition, the NMDA receptor modulator enzyme serine racemase has been
associated with schizophrenia susceptibility in humans and mice. [71].

Relevant Genes
GRIA3 (Glutamate Ionotropic Receptor AMPA Type Subunit 3), GRIN2A (Glu-
tamate Ionotropic Receptor NMDA Type Subunit 2A), SP4 (SP4 Transcription
Factor), GRIN1 (Glutamate Ionotropic Receptor NMDA Subunit zeta-1), TRIO
(Trio Rho Guanine Nucleotide Exchange Factor), SETD1A (SET Domain Con-
taining 1A, Histone Lysine Methyltransferase), SRR (Serine Racemase).

Neuron Morphology
As mentioned before, the immune system has long been suspected as a crucial
player in severe mental disorders due to the presence of an important common
variant in complement component gene C4A associated with schizophrenia.
However, modern meta-analysis applied to existing large-scale genetic and
transcriptomic datasets found that genes negatively co-expressed with C4A and
associated with neuronal and synaptic pathways involved in synaptic pruning,
exhibit a strong and specific enrichment for schizophrenia. The genes of the
complement system, on the other hand, did not [109]. The previously discussed
characteristic neurodevelopmental patterns of schizophrenia and bipolar disorder
provide further clues to support the hypothesis that excessive synaptic pruning is
involved in severe mental disorders.

Aberrant neuronal morphology is implicated in schizophrenia through versatile
genes such as SETD1A, which is known to affect axonal branching [107] and
TRIO, which is known to regulate neuronal migration, axonogenesis, axon
guidance, and synaptogenesis through actin cytoskeleton remodelling [110–112].
These two implicated genes indicate that a range of possible variations in aberrant
neuronal morphology could play a role in severe mental disorders. Finally, it is
important to mention that staining techniques applied to post-mortem human brain
tissue have indicated an association between a loss of dendritic spines density and
the presence of schizophrenia [113, 114].

Relevant Genes
TRIO (Trio Rho Guanine Nucleotide Exchange Factor), SETD1A (SET Domain
Containing 1A, Histone Lysine Methyltransferase), C4A (Complement Compo-
nent 4A).

Ubiquitin Pathways
Genomic screenings efforts have associated common and rare mutations in several
core components of ubiquitin ligases such as CUL1, PJA1, CUL9, and HERC1
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1. Introduction and Motivation

with schizophrenia. Ubiquitin [115] is a small regulatory protein (76 amino
acids) found almost everywhere in eukaryotic organisms, hence its name, and
modification of proteins by ubiquitin is mediated by a set of ubiquitin ligases [116]
and deubiquitinating enzymes [117]. The attachment of ubiquitin to a target
protein is called ubiquitination. Ubiquitin ligases can also target histones and
transcription factors, allowing them to play an important role in orchestrating
gene expression, specifically in early mammalian development [118].

Ubiquitination is typically used by a cell to mark dysfunctional or misfolded
proteins for degradation via the ubiquitin proteasome system (UPS) [119].
Dysregulation of the UPS has been linked to schizophrenia in ubiquitinated
proteins in brain and blood samples of patients [120]. The UPS plays a crucial
role in many basic cellular processes, including synaptic efficacy and cytokine
production [121, 122]. This diversity of functions of ubiquitin and its proteasome
system make interpreting their effect on schizophrenia and bipolar disorder
challenging. Whereas there is mounting evidence that ubiquitin ligases are
involved in severe mental disorders, their precise function or rather dysfunction
also remains unclear.

Relevant Genes

CUL1 (E3 ubiquitin-protein ligase Cullin 1), PJA1 (E3 ubiquitin-protein ligase
Praja 1), CUL9 (E3 ubiquitin-protein ligase Cullin-9), HERC1 (Probable E3
ubiquitin-protein ligase HERC1).

Calcium Ion Dynamics
GWASs, exome sequencing, and proband studies have all indicated mutations
in either Cav3.1 or Cav3.3 as risk factors for schizophrenia. While this is
an indication for the importance of the Cav3.x sector [123] in severe mental
disorders, its interpretation is remarkably less straightforward. For instance, rare
Cav3.3 mutations implicated in schizophrenia have been observed to affect an N-
glycosylation site, limiting transport to the cell membrane, and indirectly reducing
Ca2+ currents [124]. Similarly, protein truncating variants of Cav3.1, which are
suspected to mark the protein for degradation and hence reduce Ca2+ currents,
were associated with schizophrenia though the SCHEMA exome meta-analysis.
On the other hand, a detailed analysis of an entire allelic series of Cav3.3 in
a cohort of swedish patients has recently indicated that rare current reducing
variants of Cav3.3 may actually protect against schizophrenia [125].

Loss of function mutations in the sarcoplasmic/endoplasmic reticulum calcium
(SERCA) pump [126] encoded by ATP2A2 are also implicated in schizophrenia
and bipolar disorder [72]. The main function of SERCA pumps is to transport
calcium from the cytosol into the sarcoplasmic reticulum. The number and
efficiency of these SERCA pumps has been shown to be an important factor for
the amount of Ca2+ that remain present in the sub-membrane area of a neuron
after depolarisation [127]. Experiments on ATP2A2 heterozygous neurons have
observed that these neurons exhibit a slower decay of the cytosolic Ca2+ levels,
which confirmed an essential role of the ATP2A2 pump for Ca2+ homeostasis in
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Figure 1.4: Four Aspects of Schizophrenia Pathophysiology. Based on a variety
of different screening techniques for different sources of genetic risk associated
with schizophrenia, we highlight four genetic sectors of importance: glutamatergic
neurotransmission, neuron morphology, ubiquitin pathways, and calcium ion dynamics.

neurons [73]. Ca2+ currents play an important role in many neuronal processes
and hence the downstream effect of changes in Ca2+-levels are hard to predict.

Relevant Genes

CACNA1C (Cav1.2), CACNA1G (Cav3.1), CACNA1I (Cav3.3), ATP2A2 (ATPase
Sarcoplasmic/Endoplasmic Reticulum Ca2+ Transporting 2).

There are a few interesting observations to be made from this overview. First and
foremost, the rather unsurprising importance of neuronal and synaptic dysfunction
in severe mental disorders. Secondly, the consistent implication of the glutamatergic
system (also supported by findings of lower post-mortem levels of glutamate receptors
in schizophrenia patients [128]) and the absence of the dopaminergic system. Given
the large body of post-mortem [129], preclinical [130], pharmacological [131] and
neuroimaging studies [132] supporting dopamine dysregulation in severe mental
disorders, genetic evidence is remarkably sparse. Only one dopamine receptor (D2)
has been directly implicated in GWASs, indicating that aberrant dopamine signalling
is likely due to complicated neuromodulatory effects [133]. This observation is
even more remarkable in the light of the common use of dopamine antagonists as
antipsychotics [134] (although only effective for a part of the patient population [135])
and the limited success of glutamatergic medication [136].
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Thirdly, implicated genes can have multiple effects on different aspects of neuronal
functioning. TRIO and SETD1A for example, affect both neuronal morphology and
glutamatergic neurotransmission. It is not always clear which effects are relevant for
the disorder, and whether or not separate effects are related. As a final observation,
it is important to note the impact of post-translational protein modifications such as
ubiquination, glycolisation or lipidation in severe mental disorders [137, 138]. In
addition to marking proteins for degradation, post-translational protein modifications
can alter the location of proteins in the cell, change their substrate activity, and promote
or prevent protein-protein interactions [139, 140]. A growing body of literature reports
glycosylation and lipidation abnormalities in many diseases [141, 142], including
schizophrenia [143, 144] and bipolar disorder [145, 146].

From the genes with rare mutations identified in the SCHEMA meta-analysis,
only XPO7 (Exportin-7) and RB1CC1 (RB1 Inducible Coiled-Coil 1) have remained
undiscussed so far. The protein encoded by XPO7 is thought to be the chaperone
of other proteins, RNA, and smaller substrates through nuclear pores and into the
cytoplasm [147]. The specific role of this protein in neuronal processes and by
consequence severe mental disorders is currently unknown. Little is known about
RB1CC1 [148], except for the fact that its structure indicates it may be a regulator of
the tumour suppressing RB1 gene. Hence RB1CC1 mutations are suspected to play a
role in the occurrence of several types of cancer [149, 150]. The roles of XPO7 and
RB1CC1 will hopefully become more clear as the molecular mechanisms involved in
severe mental disorders are discovered.

The Importance of Mitochondrial DNA and Human Accelerated Regions

Novel sources of disease liability for schizophrenia and bipolar disorder are sought
after intensely to explain the heritability of severe mental disorders not covered by the
previously discussed genetic studies [151]. While human mitochondrial DNA is very
small, it only encodes 37 genes, novel risk factors for schizophrenia and bipolar disorder
could potentially be found in this genetic material [152]. A noteworthy decrease in
mitochondrial DNA oxidation has been observed in patients with bipolar disorder and
schizophrenia [153, 154]. At the same time, mitochondria are also involved in Ca2+

homeostasis, and might affect neuronal function through these pathways [155]. A more
detailed understanding of mitochondrial pathophysiology is necessary to explain the
role of mitochondrial oxidation in mood disorders and the overall importance of energy
dysregulation and oxidative stress in severe mental disorders.

Another source of genetic risk for severe mental disorder might be found in recently
discovered coding parts of DNA, called novel open reading frames (nORFs) [156], that
were previously disregarded in screening studies. Evidence from massive proteomics and
genome sequencing studies has revealed that eukaryotic genomes contain a substantial
amount of small, previously uncharacterised open reading frames. These nORFs are
typically less than 100 codons long, can be found in diverse regions of the genome, and
fall outside the classical, and rather conservative, definition of a gene. Early studies
have shown that RNA and transcripts encoded in these nORFs are involved in at least
150 rare diseases [157], and 22 different forms of cancer [158]. The study of nORFs in
schizophrenia and bipolar disorders is still in its infancy, but initial results associated
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56 and 40 differentially expressed nORFs to schizophrenia and bipolar disorder [159],
respectively. For 21 of these nORFS, it was show that encoded transcripts can form
tertiary structures, making them potential novel drug targets.

Remarkably, thirteen of the nORFs differentially expressed in sever mental disorder
were found in genomic regions of rapid and human-specific evolution known as human
accelerated regions (HARs) [160, 161]. HARs are short stretches of DNA, often found
near telomeres or next to genes involved in transcription and DNA binding [162], that
are strongly conserved across vertebrae species, including chimpanzees, but underwent
high rates of mutations in early humans [163]. HARs, which are uniquely human, are
suspected to play an important regulatory role in brain and limb development [164], and
are known to be enriched source of risk variants for schizophrenia or altered cognitive
behaviour [165]. Due to the involvement of HARs in severe mental disorders and the fact
that psychotic traits appear to be limited to the human species, it has been hypothesised
that schizophrenia and bipolar disorder are genetic by-products of human-specific brain
evolution and associated energy consumption [166–168].

Difficulties in Drug Design: Cost, Attrition, and Complexity

Despite massive public and private investment in life sciences and the continual advances
of molecular medicine, bringing new therapeutics to market has become an increasingly
expensive and time-consuming endeavour. Over the past 60 years, the ratio of new
FDA approved drugs per billion US dollars spent has steadily declined [169–171].
Currently, on average, more than twelve years pass between the first inception of a
new experimental drug and that compound reaching the patient’s bedside [172, 173].
Hotly debated estimates of research and development costs for novel drugs range from
161 million dollar to around 4.5 billion dollars [174]. The cost of developing drugs
is largely due to the substantial proportion of failures of drug candidates throughout
the development pipeline, see Figure 1.5, often due to unexpected toxicities or a lack
of efficacy [175]. The lowest probability of success in drug development is seen for
psychiatric disorders [176, 177], likely as a consequence of the complex and only
partially understood molecular mechanism underlying these diseases.

During the first decades of the twentieth century, chemicals with medicinal potential
were discovered haphazardly, synthesised by dye-producing companies, tried out in
rudimentary cell and animal experiments, and clinically tested on whichever (often
non-suspecting) group of patients was available [178]. Luckily, professionalism took
over the field of pharmaceutical research and since the 1980’s and 1990’s drug discovery
has relied strongly on lab-based target identification [179, 180] and high-throughput
screening efforts [181]. High-throughput screening consists of automated experimental
screenings of large, proprietary in-house chemical libraries of potential drug candidates.
However, even the largest of these chemical libraries only represent a tiny fraction of the
possibilities in chemical space and suffer from structural or (historical) biases [182–185].
Large-scale high-throughput screening efforts are regularly mired by false-positives, and
drug candidates arising from them have a significant chance of failure in later toxicity
screens, animal tests, or clinical trials [186–188].

Clinical trials are a series of rigorous studies of drug effects on human subjects [190].
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Figure 1.5: The Drug Development Pipeline. The process of drug discovery and
development, step by step, and the percentage cost of developing a new molecular entity
and corresponding cycle times [189] for each of these steps.

These trials are required to strictly follow guidelines from regulatory authorities
in countries or regions where the drug candidate is intended to be registered
and commercialised. Most commonly these authorities are the Food and Drug
Administration (FDA, USA) [191], the European Medicines Agency (EMEA, EU) [192]
or the Ministry of Health, Labour and Welfare (MHLW, Japan) [193]. A standard series
of clinical trials starts with a small Phase I study and ends with a large-scale Phase
III study. The primary purpose of a Phase I study is to evaluate basic safety of a drug
candidate and discover side effects in healthy subjects. Using the dose and method
found to be the safest in Phase I studies, a small group of patients are given the new
treatment in the Phase II study. Phase III studies enrol a large number of patients in
double-blind tests that compare the safety and effectiveness of the new treatment against
the current standard treatment or a placebo treatment. If a compound successfully passes
through these consecutive trials, it can be submitted for regulatory approval.

Unfortunately, up to 90% of drug candidates fail when they enter clinical studies. A
review of clinical trial data [189] (during a seven year period starting in 2010) shows that
late-stage clinical failures are most often due to a lack of clinical efficacy, unacceptable
toxicity levels, poor absorption, distribution, metabolism, excretion, and toxicity
(ADMET) characteristics, or a lack of commercial value or clinical need. Because
finding small molecules that fit regulatory requirements and have sufficient therapeutic
and commercial potential becomes harder and harder, novel drug modalities such as
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antibodies [194], peptides [195], macrocyclic molecules [196], protein degraders [197–
199] and gene editing therapies [200, 201] have attracted recent attention [202, 203].
However, in the light of a renewed appreciation of polypharmacology [204–206] and the
novel opportunities provided by artificial intelligence breakthroughs [207], enthusiasm
around small molecule drug design has (at least partially) rebounded. Because of their
favourable properties for targeting the central nervous system [208, 209], we will limit
our focus to the small molecule modality in this dissertation.

The Trials and Tribulations of Antipsychotic Medicine

A wide array of factors is involved in the current decline of efficiency in drug design,
including decreased risk-tolerance of regulatory agencies [210], but for drugs related to
severe mental disorders the situation is uniquely challenging [211]. The complex and
poorly understood pathophysiology of schizophrenia and bipolar disorder, as discussed
previously, complicates the identification of drug targets. In addition, it remains hard to
predict the cumulative network effect of altering the molecular functioning of neuronal
processes. On top of this, extra challenges with regard to penetrating the blood-brain
barrier [212], toxicities [213, 214] and off-target effects [215] are present for molecules
that act on the brain. Finally, antipsychotic medication deals with specific struggles
regarding medication adherence with estimates of non-adherence for this class of drugs
varying from 4% to 72% [216].

Before 1952, treatment options for severe mental disorders were typically limited
to desperate interventions such as electroconvulsive therapy, prefrontal lobotomies,
and insulin-induced coma therapy [217]. Early pharmacological attempts to create
antipsychotic chemicals were based on the sedative and calming effects seen in
animals, when exposed to compounds binding to histamine receptors. In 1947,
Promethazine [218] (a first generation antihistamine) was found to enhance calmness in
human subjects, but was not deemed sufficiently efficient to combat psychotic symptoms.
As a follow-up, Chlorpromazine [219] – a Promethazine derivative – was tried in a
military hospital in France with the aim to calm down patients before a surgery. In 1952,
Chlorpromazine was successfully tried as an antipsychotic agent in 38 patients [220].
The drug significantly reduced positive psychotic symptoms such as hallucinations and
delusional thinking [221].

After this initial breakthrough, Chlorpromazine was promoted as the first effective
antipsychotic and prescribed around the world, which massively reduced the amount
of chronically hospitalised patients with psychosis. This wide-spread success led to
the development of a whole array of antipsychotic medication, now known as first
generation antipsychotics [222], see Figure 1.6. Soon afterwards, seminal studies
linked the effective doses of various antipsychotic drugs to corresponding antagonism
levels of dopamine receptors [223–225]. Antipsychotic effects have consistently been
shown to occur when the occupation of striatal D2 receptors is around 65% [226].
Further increases in antagonism levels have been associated with stronger side effects
and not with improved antipsychotic efficacy [227]. Unfortunately, first generation
antipsychotics fail to ameliorate core cognitive or negative symptoms (depression,
anhedonia) in a large amount of patients [228].
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Figure 1.6: Evolution of Antipsychotics Compounds Through the Decades. After
the unexpected discovery of the antipsychotic properties of Chlorpromazine [220], a
group of first generation or typical antipsychotic, here represented by Periciazine [229],
was developed until the early 1970’s. From 1972 on, Clozapine [230] was established as
the first second generation or atypical antipsychotic. The later compounds of the second
generation of antipsychotics are represented here by Asenapine [231].

In 1961, a uniquely efficacious antipsychotic drug known as Clozapine was de-
veloped [230]. Initial pre-clinical optimism regarding this compound was limited, as
Clozapine only inhibits 30% to 40% of stratial dopamine receptors [232, 233]. How-
ever, over time it has become the only antipsychotic medication that has proven its
effectiveness against cases of otherwise treatment-resistant schizophrenia. Even at
comparatively low levels of D2 antagonism, 60%–70% of patients with resistance to
other antipsychotics were found to respond to Clozapine [234]. The precise pharmaco-
logical mechanisms facilitating Clozapine’s effectiveness remain unknown [235] and
debate about the compound’s influence on glutamatergic neurotransmission continues
actively [236–240]. Since its discovery, there have been many attempts to develop an
equally effective compound with less side effects, but so far all these efforts have been
in vain.

First generation antipsychotics typically cause a significant burden on patients
through extrapyramidal side effects (EPSEs) [241] such as acute dystonias, akathisia,
parkinsonism and tardive dyskinesia. Clozapine, while an effective antipsychotic, has
the potential to cause serious cardiovascular conditions [242] including orthostatic
hypotension, bradycardia, and syncope. In 1975, five Finnish patients on Clozapine

16



treatment died [243, 244] from secondary infections due to agranulocytosis. The
severity of ESPEs in first generation antipsychotics led to the invention and introduction
of the second generation antipsychotics in the 1990’s [245]. While second generation
antipsychotics have a similar effectiveness to first generation antipsychotics [246] and
a lower propensity to cause EPSEs [247], they are often associated with metabolic
abnormalities [248] such as weight gain, dyslipidaemia, or glucose dysregulation. Side
effect of specific antipsychotics can typically be related to their binding profiles with
regard to a wide variety of receptor types [249, 250].

Well over half a century after the invention of Chlorpromazine, the field of
antipsychotic medication finds itself in dire need of innovative new drug targets and
therapies [251]. Many of the major neuropsychiatric drug development programs
at pharmaceutical companies have been shutdown or externalised, often due to high
clinical failure rates and lack of success in standard research approaches [252]. For
instance, determining a clinically optimal dose for novel compounds remains challenging
due to a scarcity in precise biomarkers [253] and phase III clinical trials of a highly
selective glycine reuptake inhibitor (Bitopertin) had to be discontinued due to a lack
in efficacy [254]. To prevent a standstill in the development of novel antipsychotics,
the European Union and the World Health Organisation have called for additional
basic and applied research into these disorders [255]. In addition to the possibility
of developing course-altering medication as mentioned earlier, approaches based on
polypharmacology [256, 257] might also provide new and fruitful avenues for clinical
progress.

Computational Drug Design in the Age of Artificial Intelligence

Computer-assisted drug design has long been seen as a potentially potent tool for
improved compound selection and optimisation in challenging drug design projects, such
as the development of novel antipsychotics. Recent advances in artificial intelligence
(AI) and deep learning have been applied to drug design to improve the odds of selecting
the right compounds for further development [207, 258, 259]. Machine learning
models have been used to predict physicochemical properties [260], off-target biological
activity [261], or synthetic accessibility [262–264] of candidate molecules. Often, these
models are used in conjunction with expert medicinal chemists – colloquially known as
drug hunters – to rank or prioritise certain compounds for further experimental studies.
Deep learning approaches can also be used to predict biological activity of a proposed
molecule against protein targets, by estimating its binding strength, but success in this
specific (and crucially important) area has been limited [265, 266].

Traditionally, drug candidates used in large screenings efforts were required to
conform to one or more rules of thumb to promote oral active in humans [267–269].
This also increases the probability of having compounds with good ADMET properties
and easier or more convenient paths of synthesis. The most well-known of these
heuristics is Lipinski’s rule of five [270, 271]. According to this Lipinski’s rule of five,
a molecule with favourable drug-like properties has no more than five hydrogen bond
donors, no more than ten hydrogen bond acceptors, a molecular mass below 500 atomic
mass units, and an octanol-water partition coefficient that does not exceed five. The
octanol-water partition coefficient [272, 273] is a measure of a compound’s solubility
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in fats and oils, also known as lipophilicity. Yet, even with these heuristic rules in
place, in-vivo and in-vitro studies of toxicology [274], pharmacodynamics [275], and
pharmacokinetics [276] properties in proposed drug candidates remain highly necessary
to exclude compounds with a low chance of clinical success.

High-throughput screening has an estimated hit rate between 0.01% and 1% [277].
Consequently, there is a significant opportunity for alternative approaches in the drug
discovery process. One such alternative approach, called rational drug design [278–280],
reformulates drug discovery as an inverse design problem. Typically, expert medicinal
chemists make use of experimentally determined protein structures and aim to develop
small molecules tailor made to interact with certain binding sites on these targets. Most
of the time, drugs are designed to inhibit the working of an enzyme’s active site [281],
due to comparatively easy target validation and binding options. However, by binding
to regulatory (or allosteric) pockets, which are typically harder to find and bind to, the
working of a target protein can be modulated in a more intricate fashion [282, 283]. To
accelerate this process, active learning models [284] can be used which interactively
indicate which molecules need to be synthesised and tested to gain a more accurate
model which can then eventually help select the most promising candidates for further
development.

Molecular Representations for Computational Drug Design

One of the main challenges of using deep or active learning to predict the properties
of molecules, lies in molecular featurisation. Encoding a complex and dynamic, three-
dimensional probability density of electrons and nuclei into a machine-readable format
requires a significant level insight into the mixture of chemistry and computation that is
known as cheminformatics, and can be done in a myriad of ways. The most common
way to turn a molecule into a machine-readable object is through a string-of-characters
encoding known as the simplified molecular input line-entry system (SMILES) [285,
286]. A SMILES string is typically obtained by depth-first traversing a hydrogen-
reduced molecular graph and representing encountered atoms and bonds as symbols
from a predefined set. This approach allows for the use of a powerful system of
regular expressions tailored to SMILES strings, known as SMILES Arbitrary Target
Specification (SMARTS) [287, 288].

A novel text encoding system for molecules, called self-referencing embedded
strings [289] (SELFIES), was recently developed to have a one-on-one correspondence
between all valid chemical structures and all allowed SELFIES encoding. Learned
vector-encodings of text [290–292], sound [293], or images [294, 295] have become
commonplace in deep learning and similarly learned representations of molecules,
sometimes starting from SMILES or SELFIES, have also been invented in recent
years [296]. Graph-based deep learning [297–300] is currently a very active field
of research and a natural use-case for learning molecular embeddings [301–303].
Algorithmically encoding molecules in hand-crafted vector-encoding systems, however,
has a long tradition that reaches back to the earliest days of the cheminformatics and
these descriptors are still often used [304, 305].

The simplest hand-crafted molecular descriptors consist of a vector listing the
individual physicochemical properties of a molecule. More intricate descriptors, such as
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structural keys or hashed fingerprints, encode the presence of specific chemical groups
and substructures into a bit-vector [306–308]. Structural keys check a molecule against
a few hundred predefined structural patterns, whereas hashed fingerprints generate a
bit-vector by iteratively hashing all present substructures under a certain size. One
of the most well-known structural keys are the molecular access system (MACCS)
keys [309–311]. Path-based fingerprints [312] on the other hand, break up a molecule
along paths formed by its bonds. The substructures that are found along this path
are then hashed into a bit-vector. Circular fingerprints [313], such as the extended
connectivity fingerprints (ECFP) [314], follow a similar procedure but find and encode
substructures by considering increasingly larger circular neighbourhoods around each
atom.

Deep Learning for De Novo Drug Design

The success of neural network architectures [315] in generating images, text, or sound
has sparked an interest in the cheminformatics community. Based on large datasets, such
as ChEMBL [316] (2.3 million compounds), PubChem [317] (112 million compounds)
or ZINC [318] (230 million compounds), deep learning models have been developed
that aim to generate drug-like molecules [319, 320]. In practice these models learn
underlying chemical patterns and reproduce and combine these to form novel molecules.
A whole array of deep generative models with different architectures and acting on
different molecular representations has been proposed for these purposes [321, 322],
see Figure 1.7. To a limited extent, and depending on how the proposed molecules
are evaluated, the design of novel compounds by these generative algorithms can be
seen as a computational counterpart to high-throughput screening or the work done by
medicinal chemists in rational drug design.

Most notable among the deep generative models for drug design are the recurrent
neural networks (RNNs) [323] trained on SMILES. RNNs are commonly used as a
generative model for data of a sequential nature such as natural language, or sound [324–
330]. By applying RNNs to a SMILES representation of molecules, the model can
learn both the syntax of this language as well as the statistical distribution of chemical
patterns present in a database. Variational autoencoders (VAEs) [331, 332] trained on
either SMILES, SELFIES, or directly on chemical graphs, consist of two parts: an
encoder and a decoder. Both the encoder and the decoder are deep neural networks,
which respectively compress a training molecule’s representation to a continuous latent
space, and aim to reconstruct it from that latent space. The latent space acts like an
information bottle neck, and can be used to sample novel molecules which are expected
to have a structure similar to those on which the VEA was trained.

Generative adversarial networks (GANs) [333, 334], and normalising flow
models [335, 336] build on ideas developed around VAEs. Generative adversarial
networks are formed by two deep neural networks, one which generates molecules
from random Gaussian input, and a competing discriminatory network which aims
to distinguishes candidates molecules produced by the generator from the molecules
found in a training dataset. Through this zero-sum competition, both models are trained
together until the generator produces molecules that are sufficiently indistinguishable
from the training data. Normalising flow models are similar to variational autoencoders
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1. Introduction and Motivation

Figure 1.7: Deep Generative Models for De Novo Drug Design. Three of the major
artificial neural network architectures commonly used in deep generative modelling
approaches for de novo drug design are shown here: variational auto encoders (top),
generative adversarial networks (middle), and normalizing flow (bottom). Based
on Figure 1 of Generative Models for Molecular Discovery: Recent Advances and
Challenges [322].

but make use of a single deep neural network with bijective layers. That single network
is then simultaneously applied in one direction for encoding molecules into a latent
space and inverted in the other direction for decoding, making them more stable to train
than GANs or VAEs.

The methods discussed so far can be used to generate molecules similar to those
in existing databases, but they do not optimise molecules for specific properties (such
as a target lipophilicity or protein binding affinity). To obtain optimised molecules,
reinforcement learning, bayesian optimisation methods, or genetic algorithms have to
be used. Reinforcement learning [337] and bayesian optimisation methods [338] act
on previously trained deep generative models which they then tune or use to generate
molecules with the desired properties. Genetic algorithms, on the other hand, require
nothing more than an initial population of molecules and a set of rules for molecular
transformations which it then applies iteratively until it obtains sufficiently optimised
molecules. Large benchmarking efforts [339, 340] on a variety of optimisation tasks
have shown that a genetic algorithm applied directly to molecular graphs, known as the
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graph-based genetic algorithm (GB-GA) [341], is generally more efficient and effective
than deep learning based algorithms.

Unfortunately GB-GA is susceptible to stagnation around local optima. Stagnation
is a common issue for genetic algorithms, and luckily a solution for the problem can be
found in a remarkable diversification technique originally developed in the field of soft
robotics. In the second chapter of this dissertation, we discuss the effect of applying
this technique to GB-GA. Medicinal chemists often need to find a balance between
many different aspects and properties of a single candidate molecule [342], such as
potency and selectivity with regard to the chosen pharmacological targets, off-target
activity, physicochemical properties, and synthetic accessibility. To solve these types
of multi-objective optimisation (MOO) [342] problems, a series of genetic algorithm
extensions called non-dominated sorting genetic algorithms (NSGAs) [343, 344] have
been invented. In the second chapter we merge GB-GA with two different NSGA
algorithms ans discuss the potential usefulness of the resulting algorithms in chemical
optimisation and drug design.

Opportunities in Neuroscience: Accelerating Disease Models

Neuroscience is a research field devoted to the exploration and understanding of the
central nervous system [345]. It is a multidisciplinary branch of science that combines
theoretical debate and a diversity of experimental efforts with computational tools for
brain simulation and neural data analysis. Most types of neural data recorded up to
now are dividable into three categories: imaging data, spike data, and voltage trace data.
Due to recent and fast-paced technological innovations, experimental data has become
more reliably and abundantly available to the neuroscience community than ever before.
Miniature two-photon miniscopes allow for the simultaneous calcium imaging recording
of more than a thousand neurons in freely moving mice [346], miniaturised high-
density probes enable stable and long-term recordings of spike dynamics of thousands
of individual neurons [347], while recently developed patch-sequencing techniques
combine single cell RNA-sequencing with patch-clamp electrophysiology recordings to
facilitate multimodel characterisations of single neurons [348, 349].

In addition to novel tool-kits developed to analyse this recent influx of neural
data, such as deep-learned latent spaces for neural dynamics [350] or topological data
analysis [351] based on persistent homology, computational neuroscience has also
seen the rapid development of increasingly larger simulations of networks of model
neurons. While computationally expensive, large-scale computer models of networks
of neurons form an important connection between single neuron and system-level
analysis of the brain [352]. Being able to tune various parameters of neuron models,
based on experimental inputs, is a way to use computational models as a counterpart
to laboratory experiments. In these networks, model neurons can be represented at
various levels of abstraction [353, 354]. The three most common levels of abstraction
are biophysically-detailed models, point-neuron models, and population-level models.

In biophysically-detailed models, single neurons are represented by a compartmen-
talised version of their physical morphology. Tailor-made, phenomenological equations
track the different ion currents that flow in, out, and through each of these compartments
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Figure 1.8: Basic Morphology and Properties of a Neuron. Neurons are electrically
excitable cells that generate electrical pulses, known as action potentials, in their soma.
The rest of the neuron conducts these pulses and passes on excitatory or inhibitory
signals to other neurons via specialised (chemical) connections known as synapses.
Schwann cells are a type of glial cell that cover axons in a myelin-sheath to improve
action potential conduction. Microscopic gaps in the myelin-sheath, known as nodes of
Ranvier, further facilitate efficient action potential conduction. In this figure the basic
morphology of a neuron (top), the molecular mechanisms of a synapse (middle), and the
different stages of an action potentials (bottom) are shown. In a biophysically-detailed
neuron model, the neuron morphology is turned into a graph of connected compartments
and both synapses and action potentials are described by a set of (differential) equations
for each compartment.
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to determine their membrane potential. Point-neuron models are simpler and do not
have any explicitly modelled spatial extent. Point-neurons rely on integrate-and-fire
dynamics to turn synaptic inputs into an output signal. Instead of directly simulating
any form of electrophysiogical dynamics of an individual neuron at all, population-level
models make use a single population-density equation for the entire voltage distribution
of a population of neurons. In the past decade, biophysically-detailed models have
been used to reconstruct the neuronal microcircuitry of the somatosensory cortex of
the juvenile rat (Blue Brain Project) [355], and the mouse primary visual cortex (Allen
Institute for Brain Science) [356] based on sparse biological data.

To obtain accurate biophysically-detailed network models [357, 358], simulations
should not only be compared to experimental measures such as voltage traces and spiking
statistics, but also to population-level measures such as local field potentials (LFPs),
or electrocorticography (ECoG) and electroencephalography (EEG) measurements. In
contrast to action potentials, LFPs capture the low-frequency part of electric potentials
inside gray matter [359–361]. In addition to combining all these signals to pinpoint
parameters and network geometries in brain simulations, biophysically-detailed models
can also be used to predict ECoG and EEG signals based on underlying neural
activity [362]. These models could, for instance, be used to predict the impact of different
genetic mutations on EEG measurements, allowing us to match genetic information to
clinical biomarkers of severe mental disorders [363–366].

Distilling Biophysically-Detailed Neuron Models

Unfortunately, simulating even a few seconds of biological activity of a large
biophysically-detailed network model requires hours of supercomputer usage. The
required computational resources are not always widely available outside large academic
institutions, and the required runtime limits flexible use of the models. Faster
biophysically-detailed network models would allow for better parameter optimisation
and larger and more realistic model networks. The past years have seen the development
of graphics processing units (GPU) based [328] and simplified neuron simulations [367]
to fulfil some of these needs. To be able to run even larger and faster simulations, recent
attention has turned to the idea of distilling computationally intensive biophysically-
detailed neuron models into easier-to-evaluate artificial neural networks.

Several artificial neural network architectures that model the activity of
biophysically-detailed cortical neuron models, including those with non-linear dendritic
dynamics, have been devised and shown to be effective. Based on synaptic inputs, and
in some cases the membrane potential of each compartment, at the previous time-step,
these deep neural networks predict either the generation or absence of an outgoing
action potential or the membrane potential in the soma of the modelled neuron. Current
deep learning approaches that distil biophysically-detailed neuron models typically
make use of convolutional neural networks (CNN) [368–370], a class of artificial neural
network most often used to learn aspects of visual data because they efficiently learn
spatial correlations. With some simple adaptations, CNNs can be turned into an effective
tool for sequence modelling and forecasting known as a temporal convolutional network
(TCN) [371].
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A TCN is a causal, one-dimensional CNN with the same input and output sequence
lengths for each layer, including the input and output layer. To ensure causality in
each layer and to make sure that the output sequence has the same length as the input
sequence, zero-padding and dilation are applied. This relatively simple architecture has
been shown to be sufficient to predict action potentials [372]. Time-series forecasting of
the soma membrane potential, i.e. a voltage trace, has been shown to work by adding a
long short-term memory (LSTM) [373–376] network, a type of RNN, on top of a TCN
architecture and by adding the membrane potential of each compartment at the previous
time-step in the input data [377–379].

Instead of having to calculate large systems of coupled differential equations to
simulate biophysically-detailed neurons, distilled neuron models can be evaluated
through simple combinations of tensor operations. which can easily be accelerated on
specialised equipment [380]. In addition to these speed-ups, deep learning approaches
can evaluate inputs in batches so that simulation run-times can increase sub-linearly
in function of the amount of simulated neurons. Simultaneous simulation of 5000
deep-learned neuron models have been shown to run faster than a classical simulations
of a single biophysically-detailed neuron model [377]. In the following chapter, we
show how to use multi-task learning (MTL) to optimizes a TCN model to perform
simultaneous predictions of both action potentials and membrane potentials across all
compartments of a biophysically-detailed neuron model.

In-Vivo, In-Vitro, and In-Silico Models of Severe Mental Disorders

Psychiatric disorders are difficult to study due to their complex genetic architecture,
developmental nature, and the lack of direct access to the affected neural tissue of
patients. Hence, to validate and interrogate the effect of genetic variations implicated
in these diseases, neuroscientists make use of in-vivo, in-vitro, and in-silico models.
These disease models (respectively making use of living animals, advanced laboratory
techniques, or purely digital means) aim to gain novel insights into a disease or provide
the pharmaceutical sector with a strongly supported targets for clinical intervention.
On several occasions during the research period presented in this dissertation, there
has been interaction and (informal) collaboration with experts, both at the University
of Oslo (UiO) and the Oslo University Hospital (OUS), specialised in certain disease
models for severe mental disorders. The scope and outcome of these interactions are
briefly recapitulated here, as is the use and usefulness of biophysically-detailed neuron
models for severe mental disorders.

After the invention of recombinant DNA technologies in the early 1970’s [381,
382], genetically altered rodent models started to be used intensely to study a variety
of neurological diseases in-vivo. In the case of schizophrenia and bipolar disorder, a
significant amount of attention has gone to CACNA1C gene knock-out rodent models
and their aberrant behaviour in working-memory tasks [383, 384]. However, the specific
molecular effects of common CACNA1C variants in schizophrenia and bipolar disorder
are still unclear. In light of the more easily interpretable SCHEMA consortium exome
sequencing results, we have proposed a CACNA1G gene knockout model based on
the more clearly supported deleterious effect of protein truncating variants found for
this gene. As a consequence, a CRISPR/Cas9 knockout protocol [382, 385–388] for
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Figure 1.9: Neuroscience Platforms To Study Severe Mental Disorders. Different
experimental platforms can be used to study severe mental disorders such as
schizophrenia and bipolar disorder. Gene editing techniques (top) can be used to
build animal models which can be tested on different behavioural tasks. Patient-derived
brain organoids allow for the electrophysiological and genetic interrogation of human-
like neural tissue (middle). Patch-clamp electrophysiology of single neurons allows for
the construction of biophysically-detailed neuron model which can be tuned to emulate
the effect of genetic mutations on small neural circuits (bottom).

CACNA1 genes in rodents and a repetition of working memory tasks with this novel
phenotype has been included in a FODS application by members of the Hafting-Fyhn
research group (UiO).

Blood samples (specifically the red blood cells they contain) have been used as a
proxy to study mRNA expression levels in human brain cells [389]. An alternative
approach, being applied by our collaborators from the Djurovic group (OUS), makes
use of state-of-the-art cell cultures known as brain organoids, to create in-vitro access to
proxy brain cells. These brain organoids are derived from patient-specific, pluripotent
stem cells obtained through skin biopsies, and transformed into a self-organising
and three-dimensional cell culture by means of an intricate and expensive chemical
process [390–392]. We have supported their preliminary analysis, in which they compare
brain organoids derived from fourteen schizophrenia patients with brain organoids
derived from healthy controls, by providing a theoretical context regarding upregulation
of an ion transporter and the effect on GABA neurotransmission as regulated through
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intraneuronal chloride concentrations.
Attempts to evaluate the influence of genetic variants and differentially expressed

protein levels in computational models have been made [393–396]. Due to the challenges
in linking genetic mutations to their functional effects, ad-hoc parameter association
and modification is often used to link these models to questions regarding the molecular
mechanisms of severe mental disorders. Hence, these simulations (and their outcome)
should be seen as prototypes rather than being accepted as precise disease models
for severe mental disorders. Better knowledge of the functional effect of individual
mutations, more accurate biophysically-detailed neuron models, and efficient large-scale
biophysically-detailed simulations powered by deep learning approaches are necessary
to turn the current methods into tools with real-world applications such as patient
stratification or disease mechanism elucidation.
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Chapter 2

Concepts and Methodology
In the previous chapter, we introduced the pathophysiology and underlying genomics
of severe mental disorders, and showed how computational tools in drug design and
neuroscience can be useful in studying and potentially treating these diseases. We
highlighted challenges in de novo drug design regarding optimisation stagnation and
noted opportunities to accelerate computational neuroscience models through deep
learning. In this chapter, we delve deeper into the concepts and ideas necessary to
understand and evaluate the three research projects presented in this dissertation. Two of
these projects focus on topics regarding quality-diversity methods in computational drug
design, and one research project explores the premise of using multi-task deep learning
with expert diversity for the distillation of biophysically-detailed neuron models.

A common theme in these three different research projects, aside from their
connection to the study of severe mental disorders, is their consistent use of some
form of computational diversity as a resource. In the first project, we make use of a
quality-diversity method, which leverages chemical diversity to avoid being trapped in
local minima, to solve the stagnation issues of GB-GA. The follow-up project shows
that NSGAs do not rely on chemical diversity to deal with complex chemical trade-offs
in optimisation problems but rather make use of diversity enforced in optimisation
space. Finally, in the project that distils biophysically-detailed neuron models into
MTL Architectures, we tested deep learning models that encourage diversity in internal
data representations by feeding the data through multiple copies of the same input
architecture.

Implementation details, exact results and complete benchmarks for each project
can be found in the corresponding manuscripts, which are presented at the end of this
dissertation. Open-source software for each of the research projects is (or will be)
available online and can be found in the Github repositories cited in the manuscripts.
These repositories are living documents, and have in some cases undergone updates
and improvements since the publication of the manuscripts, and might undergo further
updates after the publication of this dissertation. A history of all changes to the software
can be found in the track-changes of the respective Github repositories. The majority of
the data generated for the plots and results, and benchmarks presented in the manuscripts
has been made available at the time of publication, all other (often more cumbersome)
data can be obtained from the authors upon simple request.

Quality-Diversity Methods in De Novo Drug Design

In optimisation problems where there is no analytical gradient to compute, as is typically
the case in molecular optimisation, genetic algorithms are known to be powerful
optimisation tools [1–3]. These algorithms, such as GB-GA [4], are inspired by the
biological phenomena of evolution by natural selection. In nature, we observe variation
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2. Concepts and Methodology

Figure 2.1: Graph-Based Genetic and Illumination Algorithms. Both GB-GA and
GB-EPI make use of graph-based mutations and crossovers (left), but differ in how they
select a population of molecules for inclusion in the next generation (right). A non-
exhaustive list of examples of mutations and crossovers on molecular graphs is shown
here to illustrate the concepts behind these operators rather than the specific technicalities
of their implementation in GB-GA and GB-EPI. The two different selection procedures
are illustrated by drawing a demarcation line (dotted) between the selected (green) and
discarded (red) individuals of the evolutionary population.

within all types of life-forms due to an interplay of random genetic mutations and genetic
inheritance. Natural selection acts on this variation though differential survival, based
on how successful a life-form is at reproducing. Genetic algorithms aim to emulate this
mechanism by subjecting a population of candidate solutions of an optimisation problem
to iterative cycles of variation and differential selection based on their optimisation
performance. In this way, the potential for a candidate solution to participate in the next
cycle of the algorithm is tied to their ability to solve a given optimisation problem.

Iteration after iteration, the repeated application of simple natural selection rules,
as such described above, forces the population of candidate solutions to move towards
a better optimisation performance. In the genetic algorithm community, a candidate
solution is called an individual and its optimisation performance is known as its fitness.
The initial population of individuals (i.e. candidate solutions) is typically randomly
generated or chosen from an existing database of possible solutions to the optimisation
problem. Starting from this initial population, new individuals are created by two
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variation operators, known as mutations and crossovers, that mimic natural variation.
Mutations randomly change small aspects of existing individuals whereas crossovers
combine parts of existing individuals into a novel candidate solution.

Many slight variations on the basic genetic algorithmic scheme, for specific use-
cases, have been devised over the years. In GB-GA, candidate molecules are represented
by their molecular graphs, and mutations and crossovers act on these graphs by randomly
changing atom or bond types or by merging molecular fragments into a new molecule.
Schematically, GB-GA can be represented by the following three recurring steps:

1. Evaluation: Evaluate the fitness of each molecule in the current evolutionary
population, with respect to a given optimisation function (also known as a scoring
or objective function).

2. Selection: Rank all the molecules according to their fitness and retain only a
subsection of the population based on that ranking, either directly or through a
weighted stochastic process.

3. Variation: Apply the variation operators, i.e. mutations and crossovers, to
the underlying molecular graphs of the selected subpopulation to create new
molecules to add to the population.

To obtain relevant and realistic molecules, molecular graphs that have been generated
with incorrect valences (as determined by RDKit), or those that contain macrocycles or
allene centers in rings are systematically discarded from the population. The initial set
of molecules used in GB-GA is typically randomly chosen from the first 1000 molecules
in the ZINC dataset [5].

While far more efficient than deep learning methods for de novo drug design, GB-
GA sporadically suffers from stagnation issues [6, 7]. Stagnation occurs when the
algorithm cannot find its way out of a population of sub-optimal molecules due to a
lack of (molecular) diversity. Molecules in or near a local fitness optimum are hard to
remove from the evolutionary population because almost all mutations and crossovers
produce molecules with a lower fitness. As a consequence, molecules from the local
fitness optimum start to dominate the evolutionary population by filling it with highly
similar molecules which also lie in the local optimum. This causes stagnation of the
genetic algorithm. When stagnation is encountered in GB-GA, the algorithm needs to
be either restarted completely or the evolutionary population has to be supplemented
with an ad-hoc variety of other molecules.

To encourage broad exploration of the search space, and hence avoid stagnation,
a new class of optimisation algorithms called quality-diversity (QD) algorithms [8]
was developed. These algorithms are exemplified by the multi-dimensional archive
of phenotypic elites (MAP-Elites) algorithm [9–12]. MAP-Elites is a simple and
efficacious QD approach that enforces population diversity explicitly by splitting the
evolutionary population into feature space niches and retaining only the single most fit
individual within each niche. In MAP-Elites, each candidate solution is associated with
a vector describing a handful of user-defined properties. Based on this descriptor, the
candidate solution is assigned to a niche in feature space. MAP-Elites and GB-GA serve
together as the core architectures of the Graph-Based Elite Patch Illumination (GB-EPI)
algorithm, presented in Paper I: Illuminating Elite Patches of Chemical Space.
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The Graph-Based Elite Patch Illumination Algorithm

The GB-EPI algorithm builds on the inner mechanisms of GB-GA, in the sense that it
continues to employ molecular graphs to which mutations and crossovers are applied.
GB-EPI implements the necessary feature vector as a list of physicochemical properties
of a molecule, effectively turning the archive of niches into a map of chemical space.
Dividing chemical space into feature-based niches and explicitly enforcing population
diversity is a paradigm shift away from GB-GA [13–15]. GB-EPI allows users to choose
their own features of interest and the value ranges in which to explore these features.
This enables chemists to demarcate the subset of chemical space in which the algorithm
can search for locally optimal molecules. In the manuscript, pseudo-code for the MAP-
Elites algorithm as applied to de novo molecule design in GB-EPI is provided as well
as a link to the Github repository containing a full and open-source implementation of
GB-EPI.

The molecules retained at the end of a GB-EPI run form a patchwork of locally
optimal (or elite) solutions which clarify design trade-offs, where their fitness scores are
an indication of how optimisation performance varies over chemical space. We hope that
access to this information will both encourage interaction between the algorithm and
medicinal chemists, as well as aid the development of more realistic scoring functions
for molecular optimisation. On top of these additional use-cases, GB-EPI also provides
the community with a straightforward and interpretable optimisation algorithm that
avoids stagnation and is more efficient than GB-GA. At every generation, GB-EPI
contains solutions spread out over the feature space. Solutions in far-away niches are an
ever-present resource of diversity that can be accessed to accelerate optimisation or to
escape stagnation.

A multitude of small technical improvements on the original GB-GA and MAP-
Elites algorithms have been included in GB-EPI. Among others, these improvements
include the decoupling of mutations and crossovers for improved optimisation, positional
analogue scanning for broader exploration [16], memoisation to reduce unnecessary
function calls [17], and the use of niches organised along a centroidal Voronoi
tessellation (CVT) [18]. Further motivation and implementation details for all of these
technical improvements can be found in the manuscript and accompanying code. Finally,
it is worth noting that GB-EPI has a broad set of options for filtering out molecules based
on ADMET property calculations and structural filters, and has built-in concurrency for
both fitness and feature vector calculations, which significantly decreases the overall
runtime of the algorithm.

Benchmarking Molecular Optimisation Through GuacaMol

To assess the efficiency of different generative models for de novo molecular design,
the London-based bioinformatics company BenevolentAI has released an open-
source benchmarking suite called GuacaMol [19]. This benchmarking suite provides
researchers with a variety of computationally affordable molecular optimisation tasks.
In the manuscript where we introduce GB-EPI, we made use of GuacaMol to compare
the performance of a representative SMILES RNN model with GB-GA and GB-EPI
on three explicit rediscovery tasks and two median molecule tasks. The Guacamol
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benchmarking suite automatically removes molecules highly similar to the targets from
the database of initial molecules usable by the generative algorithms. In addition,
to make the benchmark more informative, we also recorded the results for all three
algorithms on both median molecules benchmarks for a more randomised set of starting
molecules.

Explicit rediscovery tasks require the generative algorithms being benchmarked to
rediscover an existing FDA-approved molecule through a computationally affordable
similarity measure as a fitness function. Typically, this measure is the Tanimoto
similarity applied to some version of extended-connectivity fingerprints [20]. The
median molecules benchmarks on the other hand, require the generative models to
find a molecule that maximises the geometric mean of similarities to two different
existing molecules. The median molecules benchmarks starting from highly randomised
molecules are far more strenuous than the explicit rediscovery benchmarks. On these
more difficult benchmarks, GB-EPI was shown to outperform both the SMILES RNN
model and GB-GA. Notably GB-EPI was observed to cover a significantly larger part of
the chemical space. More details, and exact results for the benchmarks can be found in
the manuscript.

Pareto Optimisation and De Novo Drug Design

Due to the success of GB-EPI in the GuacaMol median molecules benchmarks, and the
fact that GB-EPI covers wide parts of chemical space by design, questions about the
algorithms usefulness in MOO problems arose quickly after its publication. Instead of
testing GB-EPI’s efficiency on benchmarks that aggregate performance across different
objective functions into a single value, we turned to Pareto optimisation problems to
truly probe the algorithms efficiency. In Pareto optimisation, algorithms are tasked to
find a set of solutions that covers all the optimal trade-offs between objectives. None of
these solutions can be improved in any one objective without lowering the performance
with regard to at least any one other objective. Solutions fulfilling these requirements
are called Pareto dominant and they form a structure in optimisation space known as
the Pareto front [21].

Making conclusions about the efficiency and potency of GB-EPI in this setting was
made significantly more difficult by the lack of comparable, open-source implementation
of baseline genetic algorithm methods for Pareto optimisation in de novo drug design.
Therefore we implemented open-source versions of NSGA-II and NSGA-III for
molecular MOO [22–24]. In Paper II: Graph-Based Molecular Pareto Optimisation
we presented these algorithms and compared their optimisation efficiency with with
GB-EPI on seven different newly introduced MOO benchmarks. As a novelty, we
tracked the chemical diversity of the evolutionary populations of these algorithms
during optimisation and discovered that NSGA-II and NSGA-III obtain high levels of
optimisation efficiency without relying on chemical diversity.

Instead of applying differential selection within niches, NSGA algorithms divide
an evolutionary population based on a ranking of Pareto dominance ranking. NSGA
algorithms only truly differ in how they use objective space diversity to differentiate
between candidate solutions with a similar rank, see Figure 2.2. NSGA-II, for instance,
promotes the selection of molecules with a larger optimisation space distance from
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Figure 2.2: Splitting Front Procedures in NSGA-II and NSGA-III. NSGA-II and
NSGA-III both select molecules based on their Pareto dominance ranking, but differ
in how they select molecules with an identical ranking. For illustrative purposes,
we here choose to apply the splitting procedures on the second Pareto front. The
members of the evolutionary population selected for the next generation are either
Pareto dominant (green) or more diverse in the optimisation space (orange) than their
discarded counterparts (red). In NSGA-II, diversity is measured through means of a
crowding measure which is used to select the most isolated individuals. NSGA-III, on
the other hand, makes use of orthogonal distances to pre-defined reference directions to
enforce diversity by selecting the individuals with the smallest orthogonal distance to
each of the directions and the fitness directions.

other molecules. Whereas NSGA-III enforces diversity by selecting molecules close to
pre-defined (equally spaced) reference directions in optimisation space. Note that
the implementations of NSGA-II and NSGA-III presented here make use of the
previously discussed improvements on GB-GA to efficiently calculate fitnesses and
modify molecules. Further implementation details for these algorithms, and comments
on the incorporation of recent technical improvements for NSGAs can be found in the
manuscript.

Dominated Hypervolume and Internal Structural Similarity

The dominated hypervolume measure calculates the size of the region Pareto dominated
by a set of points in objective space and is an indicator of how close the points are to the
ideal Pareto front and how spread out these points are over objective space [25]. Using
the dominated hypervolume as an evaluation metric, both NSGA-II and NSGA-III were
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shown to outperform GB-EPI (which optimised the aggregated version of the same
benchmarks). In general, the effectiveness of NSGA-II and NSGA-III is known to
dependent on the specific Pareto optimisation problems they are applied to. In our
benchmarks no consistent difference in term of efficiency was found between NSGA-II
and NSGA-III. Markedly, NSGA-II and NSGA-III manage to produce solutions with a
higher aggregated objective score than GB-EPI while not directly optimising for this
metric.

To gain deeper insight into the differences between the optimisation algorithms,
we also calculated the internal structural similarity of their respective evolutionary
populations, as a measure of chemical diversity. No unified nor generally accepted
framework for measuring chemical similarity of two or more compounds currently
exists. The previously mentioned Tanimoto similarity (applied to ECFPs) is often used
to compare two molecules. These Tanimoto similarities can also be used to measure
similarity across a population of molecules by, for instance, calculating the determinant
of the matrix of all pair-wise similarities. While this approach is at least minimally
informative, it suffers from a computational cost that scales quadratically with the
amount of molecules in the population. In an attempt to address this issue and to
standardise similarity computations over a large group of molecules, extended similarity
metrics have recently been proposed in the literature [26, 27].

Extended similarity metrics were designed to compare a set of equal-length bit-
vectors, (like ECFPs) based on the number of coincidences of ones and zeros in each
position along the vectors. Extended similarity metrics can be constructed so that,
when they are applied to a pair of bit-vectors, they naturally reduce to existing binary
measures such as Tanimoto similarities. In paper II, one such extended similarity index
is applied to each generation of the evolutionary populations of NSGA-II, NSGA-
III, and GB-EPI to study how internal similarity evolves throughout optimisation.
This measurement demonstrated that NSGA-II and NSGA-III achieve their efficient
Pareto optimisation while increasing internal structural similarity, in contrast to GB-
EPI. Whether other, more involved, similarity indices can incorporate diversity in
objective space and structural diversity into one single measurement remains an open
and interesting question.

Distilling Biophysically-Detailed Neuron Models

Computational modelling has become a cornerstone of modern neuroscience [28]. As
discussed in the first chapter, electrophysiological properties of neurons can be simulated
at many different levels of detail. Multi-compartmental, biophysically-detailed neuron
models are among some of the most involved and detailed neuron models available, but
require significant computational resources [29, 30]. By distilling these costly models
into ANN architectures, which by design are computationally cheaper and easier to
evaluate, large-scale, biophysically-detailed network models can be democratised and
will hopefully become a regular occurrence in neuroscience publications. A simple
CNN architecture adjusted for causality, known as a TCN has been shown to be able to
accurately predict action potentials based on an input consisting of a brief history (17 ms
- 205 ms) of synaptic inputs [31, 32]. To predict voltage traces, especially in multiple

59



2. Concepts and Methodology

compartments simultaneously, more involved architectures seem to be necessary.
Recent work has claimed that both feed-forward networks and TCNs are capable

of predicting sub-threshold membrane potentials but unable to predict voltage traces
that include action potentials [33]. It is claimed, that in the presence of action potentials
these models fail to deal with the non-normal distribution of voltage data and converge
to the mean membrane potential of the training dataset. The use of a combined TCN-
LSTM architecture, applied to a combination of synaptic inputs and voltage traces, on
the other hand, was shown to be able to predict both sub-threshold activity and action
potentials. Encouragingly, the interpretability and generalisation capability of the TCN-
LSTM architecture was shown to be comparatively high. Exploration of TCN-LSTM
parameters after training showed that the model gives equal importance to distal and
proximal synaptic inputs and the TCN-LSTM model is efficiently re-trainable to account
for specific changes in the underlying biophysically-detailed neuron. In addition, it is
suggested that the TCN-LSTM model is a good starting point for predicting optical
readouts (i.e. fluorescent calcium indicators).

The TCN-LSTM architecture was initially trained on a biophysically-detailed neuron
model of a layer V pyramidal neuron, but later (in the same paper) the architecture was
also used to establish distilled neuronal models for the other major cortical pyramidal
neuron types (layer II/III, layer IV and layer VI) [34]. For a single neuron simulation, the
TCN-LSTM architecture was shown to give speed-ups of up to three orders of magnitude.
For network simulations, an acceleration of close to five orders of magnitude has been
recorded. With the availability of these efficient tools for running biophysically-detailed
neuron models, parameter scans of large network simulations become feasible. As an
example, the authors that introduced TCN-LSTM distillation to biophysically-detailed
neuron models studied the influence of recurrent connections and excitatory drive in a
cortical network of layer V pyramidal neurons to understand network instability in the
context of Rett syndrome pathophysiology [35, 36].

Two of the most obvious applications of efficient and accurate distillation of
biophysically-detailed neuron models are accelerating large-scale networks, such as the
previously mentioned rat sensory somatic cortex and the Allen V1 cortical models, and
the creation of in-silico disease models for a range of neurological diseases including
severe mental disorders. A biophysically-detailed simulation of the mouse V1 cortical
area could, for instance, be accelerated using no more than 114 different distilled
neuron models, each of which corresponds to one type of neuron in the network model.
However, as explained in the previous chapter, for both existing large-scale networks of
brain areas and novel in-silico disease models, it would be highly beneficial to be able
to simulate LFPs. The current implementations of distilled neuron models only predict
the membrane potential in a single or limited amount of compartments. To efficiently
extend the membrane potential predictions to every compartment, we turned to ideas
from MTL which were previously have been applied to other biological and medical
datasets [37, 38].

Heterogeneous Multi-task Learning with Expert Diversity

Predicting multiple heterogeneous targets is a challenge for traditional deep learning
architectures. The simplest approach to predict a heterogeneous set of targets is to make
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Figure 2.3: Hard Parameter Sharing for Prediction of Membrane Potentials.
Neural network architecture of hard parameter sharing in multi-task learning for
the simultaneous prediction of membrane potentials. This network is composed of
a comparatively large, shared bottom and smaller task-specific branches known as
towers. Each of the towers predicts the membrane voltage for one compartment of
the biophysically-detailed neuron model. Optionally, an extra tower can be added for
a binary prediction of the presence or absence of an outgoing spike. The input data
is either a history of synaptic inputs or a combined history of synaptic inputs and
membrane voltages.

a separate deep learning model for each target. Unfortunately, this approach incurs
a computational cost that increases linearly with the amount of tasks that need to be
learned. Whereas separate deep learning models can be used in situations when the
different tasks are not strongly correlated with each other, it is often more efficient (and
sometimes more effective) to leverage associations between tasks to train a single model
that makes simultaneous predictions for all tasks [39, 40]. Architectures of this sort
can be divided into two main groups: the hard parameter sharing models and the soft
parameter sharing models. In our research, we have applied one type of hard parameter
sharing model and two types of soft parameter sharing models to predict the membrane
potentials across all compartments of a cortical layer V biophysically-detailed neuron
model [41].

In hard parameter sharing models, a single neural network (often called the bottom)
is used to learn a representation which is shared by a series of smaller task-specific
networks (known as the towers) that each produce the output for an individual task [42].
The main advantage of this approach is that the amount of parameters in the model
scales more slowly with respect to the amount of tasks. Soft parameter sharing models
on the other hand, make use of multiple encoders (also known as the experts) that
learn different representations of the input data which are then mixed-and-matched to
the experts. The main advantage of soft parameter sharing is that it provides flexible
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feature sharing which can encourage the network to learn both task-specific and globally
shared representations. For our purposes, we will focus on two architectures that
use a data-driven gating mechanism to facilitate soft parameter sharing. These two
approaches are known as the multi-gate mixture-of-experts (MMoE) [43] and multi-gate
mixture-of-experts with exclusivity (MMoEEx) [44].

MMoE and MMoEEx mix-and-match feature representations learned by the experts
through adaptive gate functions which are trained on the input data to give different
weights to different representations through matrix multiplication. The fact that these
adaptive gate functions are exposed to the input data allows for dynamic parameter
allocation between task-specific and global representations. However, the only initial
source of diversity among the experts lies in the random initialisation of the network
architecture. As a consequence, there is no strict guarantee that different experts
specialise in learning either task-specific or shared representations. To encourage further
specialisation among the experts, MMoEEx adds exclusion and exclusivity conditions to
the MMoE architecture. The MMoEEx approach forces some experts to only contribute
representations to some towers while other experts can learn representations available
to all towers which has caused improved learning in some MTL tasks.

Multi-task Learning for Biophysically Detailed Neuron Models

In our exploratory study, we use a TCN architecture for both the bottom and all the
experts. These TCNs are used to learn representations of a short history of synaptic
inputs and voltages traces. In the case of our hard parameter sharing model, we pass this
learned representation to experts consisting of a simple feed-forwards neural network
for each compartment, see Figure 2.3. As a form of guidance for the algorithm, we
also predict the absence or presence of an action potential in the soma. In the case
of MMoE or MMoEEx, we use a homogenous set of TCN architectures as experts.
However, due to the particularities of our input data, and more specifically the large
amount of input features, we add a single extra expert to compress the input data
before presenting it to the gating functions, see Figure 2.4. Otherwise, according to
our experience exploring this, the size of the gating functions (in terms of learnable
parameters) becomes prohibitive large with respect to the use of specialised acceleration
hardware.

Implementation details, training results, and a study regarding the importance of
expert diversity in our models is provided in a preliminary version of our manuscript
Multi-stask Learning of Biophysically-Detailed Neuron Models, which can be found
at the end of this dissertation. In short, our initial conclusions and insights indicate
that using a TCN architecture as the bottom or experts in our hard or soft parameter
sharing schemes is sufficient to predict both the action potentials and the sub-threshold
dynamics of the voltage traces across compartments. Without giving any extra weight to
the binary prediction task, we observe no to little improvement on this single task during
training. One important aspect in training these multi-task architectures for predicting
neural behaviour is the need to include a history of standardised voltage traces of each
compartment in the training or test data. Future work solidifying and clarifying these
results, and a link to an open-source implementation of these architectures will be
provided in the final version of the manuscript.
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Figure 2.4: Soft Parameter Sharing for Prediction of Membrane Potentials.
Network architectures of the soft parameter sharing approaches multi-gate mixture-
of-experts (top) and multi-gate mixture-of-experts with exclusivity (bottom) for the
simultaneous prediction of membrane potentials. These networks are composed of
a (partially) shared set of experts and task-specific branches known as towers. The
connections between the outputs of the experts and the towers are mixed and matched
by gating functions trained on the (compressed) input data.
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Chapter 3

Conclusion and Outlook
Severe mental disorders such as schizophrenia and bipolar disorder impose a heavy cost
on society and form a significant challenge for the scientific, psychotherapeutic, and
medical communities. The search for effective cures or treatments of these diseases
is an ongoing endeavour, hampered by shortcomings in our current biomolecular
understanding of mental functioning. In this dissertation, we have aimed to give a
sense of the complexity involved in studying severe mental disorders, and tried to
highlight the diversity of tools – computational or otherwise – involved therein. In this
final chapter, we recapitulate the motivation and methods discussed in the preceding
chapters, and discuss opportunities for future research. In addition, we provide an
overview of the research and teaching contributions made by the author during the
period of these PhD studies. As an endpoint to this dissertation, we provide the reader
with brief concluding remarks.

Summary and Discussion

This dissertation covers a wide range of research topics that are linked together
(conceptually and technically) through the study of severe mental disorders and the use
of computational diversity as a resource. Current treatments options for schizophrenia
and bipolar disorder, in terms of pharmacological and psychosocial intervention, have a
limited rate of success. The development of novel compounds to treat severe mental
disorders is curbed by large caveats in our current understanding of the biomolecular
mechanisms underlying these diseases, the general challenges in high-throughput
screening or de novo drug design, and the lack of biophysically-detailed computer
models that can combine and integrate the effects of many different genetic variations.
For the latter two of these challenges, we introduced novel computational tools and
performed analyses of the importance of diversity in these tools.

Biomolecular Mechanisms of Severe Mental Disorders
Schizophrenia and bipolar disorder are heterogeneous diseases characterised by a
wide range of clinical manifestations regarding cognitive, perceptive, and emotional
functioning. While external factors such as pre-natal malnutrition, childhood infection
or substance abuse are known to contribute to the development of these disorders, there
is no doubt that genetic variations form the main biological foundation upon which
which mental disorders can develop. Unfortunately, much of the spectrum of genetic
variations that cause or facilitate the pathophysiology of schizophrenia and bipolar
disorder remains unknown. In this dissertation, we have attempted to make a synthesis
of current genetic screening efforts and argue that at least four distinct biomolecular
sectors (glutamatergic neurotransmission, neuron morphology, ubiquitin pathways, and
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calcium ion dynamics) are strongly implicated in severe mental disorders. Recent
research also seems to indicate that neurodevelopmental pathways, novel open reading
frames in human accelerated regions, and plausibly mitochondrial dysfunction are
involved in these disorders.

As mentioned before, the exact biomolecular mechanisms underlying severe mental
disorders remain unclear. Even for known genetic risk factors, extensive in-vitro, in-
vivo, and in-silico studies are necessary to elucidate the impact of genetic variants on
neuronal functioning. Development of disease models for severe mental disorders is
ongoing at both the University of Oslo and the Oslo University Hospital. It is important
to note that each of these techniques comes with scientific and technical advantages
and disadvantages. Brain organoids have become a potent model of early human
brain development but face technological challenges and are hard to link to specific
behavioural phenotypes. Animal models, on the other hand, can be used to study
behaviour but are hard to match to clinical biomarkers. Biophysically-detailed neuron
models have the potential to bridge the gap between these experimental modalities but
require significant improvements before they can be considered to accurately represent
neuronal biology.

De Novo Drug Design in The Age of Deep Learning
Novel antipsychotic compounds for use in patients with severe mental disorders are
highly sought after. Drug design is unfortunately a challenging endeavour because of the
sheer size of the drug-like chemical space that has to be explored and the combination of
different property requirements that needs to be fulfilled. Faced with such a challenging
and important chemical design problem, and in light of the recent success of deep
generative models for others modalities such as image, sound, or text, computational
chemists turned to the use of deep learning architectures. These artificial neural network
architectures are trained on large databases of drug-like molecules and learn to reproduce
underlying patterns and chemical motives. Current machine learning efforts to coax
these algorithms into producing molecules with optimised properties remain plagued by
a significant lack of efficiency.

In this dissertation, we discussed the introduction of a quality-diversity technique
called graph-based elite patch illumination that largely resolves efficiency issues in
single objective optimisation tasks for molecular design. This algorithm relies on ideas
from genetic algorithms but avoids the typical stagnation issues by enforcing diversity
of the evolutionary population explicitly. In addition to providing a reliable source
of diversity to facilitate efficient optimisation, graph-based elite patch illumination
also generates an overview of the potential for optimisation in feature space. To a
limited extent, graph-based elite patch illumination has already seen practical use. An
early prototype of the algorithm was used to propose several molecules that were
synthesised and assayed as potential antiviral compounds against COVID-19 by the
COVID Moonshot effort.

In reaction to questions from the cheminformatics community, we tested the
capabilities of graph-based elite patch illumination in multi-objective Pareto optimisation
problems in a follow-up paper. To have access to baselines for comparison, we
implemented open-source and graph-based versions of two non-dominated sorting
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genetic algorithms: NSGA-II and NSGA-III. Our benchmarking efforts showed that
these algorithms remain state-of-the-art in terms of efficient multi-objective optimisation
for molecular design and outperform the graph-based elite patch illumination algorithm.
Remarkably, these non-dominated sorting genetic algorithms were also shown not to
rely on explicit chemical diversity to obtain efficient optimisation. To calculate the
chemical diversity of the evolutionary populations in these algorithms, we made use of
extended similarity indices.

Accelerating Biophysically-Detailed Neuron Models
Biophysically-detailed neuron models contain biologically interpretable parameters
and allow for the calculation of local field potentials, making them highly relevant
for the study of complex neurological disorders. The challenge of using these models
mostly lies in their high computational cost: tuning parameters or running simulations
of large networks of model neurons requires computational resources on a scale that
is often unavailable outside specialised research centers. This problem has largely
been solved, in a series of recent papers, by distilling the input-output relationship
of a biophysically-detailed neuron model into a comparatively simple artificial neural
network architecture. For small network simulations this approach has already been
shown to produce a decrease in runtime of near to five orders of magnitude.

In this dissertation, we discussed how to apply the current forefront in artificial
neural network architectures for multi-task learning to predict the membrane potential
in each compartment of a biophysically-detailed neuron model simultaneously. Voltage
traces of multiple compartments within the same neuron are strongly correlated to each
other due to the morphology of the underlying neuron model, making this distillation
problem an excellent candidate for efficient multi-task learning. On the other hand, the
values of these voltages traces follow a non-normal distribution because of the presence
of action potentials. This task can, hence, be seen as a stringent test of multi-task
learning architectures and specialised optimisation procedures of these architectures.
In addition, distillation of a full biophysically-detailed neuron will also allow for the
calculation of local field potentials as a post-processing step.

Future Work and Possible Technical Improvements
During the three years discussed in this dissertation, many different research avenues
were explored. Due to the usual practical limitations of time, energy and computational
resources, only a fraction of the considered research ideas were turned into actual
projects. At the same time, it is imperative to be aware of the current shortcomings and
opportunities for improvement of the research projects that have been presented in this
dissertation. Therefore, we list a limited selection of suggestions for future work below.
For clarity, we group these comments by subject as discussed above: disease models,
molecular optimisation, and distilling biophysically-detailed neurons.

Disease Models
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To obtain a coherent and accurate picture of the biomolecular mechanisms of
severe mental disorders, deliberate and thoughtful use of combined in-vitro, in-
vivo, and in-silico disease models will be necessary. At the same time, each of
these modalities is struggling with its own technical issues, and has its own unique
opportunities for improvement.

• The important effects of electrophysiological activity on gene expression [1–
3] are often not taken into account when analysing cell cultures or brain
organoids, and hence the wide adaptation of patch-sequencing techniques
might allow for the discovery of novel mechanisms involved in severe mental
disorders.

• Brain organoids currently suffer from issues with regard to cell maturation,
reproducibility, perfusable vasculature and development of a blood-brain
barrier [4, 5]. Yet, these cell cultures can still serve as a unique platform to
study the impact of common variants implicated in neurological diseases
and their synergetic effects through the application of CRISPR/Cas9
techniques [6–8].

• Creating animal models of disorders that are both strongly polygenic and
reliant on external factors is notoriously difficult [9, 10]. However, the
effects of genetic variations in the genes implicated through the SCHEMA
consortium [11] should be reflected well by CRISPR/Cas9 knock-out
models. Alternatively, cross-species conserved biological functions could
be targeted to make novel animal models for mental disorders [12].

• Several obstacles still stand in the way of the common and accurate
simulation of large-scale networks of biophysically-detailed neuron models.
Whereas challenges regarding speed and computational cost are being
resolved, problems with biological accuracy remain. More systematic and
standardised electrophysiological measurements will be necessary to make
the construction of detailed and accurate networks representative of large
brain areas possible [13–15].

• Most current biophysically-detailed neuron models group different ion
channels of a similar type together into one ad-hoc ion current model
for simplicity. The construction of an accurate ion current model for
each ion channel in Channelpedia [16], and the common use of patch-
sequencing [17, 18], could facilitate the development of biophysically-
detailed neuron models with significantly improved biological detail and
accuracy.

Molecular Optimisation
The past years have seen the revival of traditional computational techniques in
molecular optimisation and design. Genetic algorithms remain the driving force
behind the current state-of-the-art molecular optimisation algorithms, despite the
large investments of academia and industry in their deep learning counterparts.
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Questions about how to integrate both methodologies to obtain the best of both
worlds remain open.

• Genetic algorithms apply mutations and crossovers randomly, without
taking rewards or past experience into account. To rectify this waste of
information, the choice of variation operations applied to any given molecule
could be decided upon through reinforcement learning or a contextual
non-linear bandit algorithm. Applications of these ideas have been shown
to be effective in quality-diversity algorithms developed for latent space
illumination and evolutionary robotics [19, 20].

• In our study of molecular Pareto optimisation, we made use of the dominated
hypervolume as performance indicator for the potency of the studied
algorithms. However, the dominated hypervolume can also be used as
a resource within the optimization process. Algorithms that make use of this
approach exists, and could – maybe even should – be tested in the setting of
molecular multi-objective optimisation [21, 22].

Distilling Neurons
Even though distilled biophysically-detailed neuron models have been shown
to be efficient and relatively accurate, they have not yet been incorporated in
simulations containing more than a few thousand neurons. Examples of larger
neuron networks include the neuronal microcircuitry of the somatosensory cortex
of the juvenile rat (Blue Brain Project) [23] and the mouse primary visual cortex
(Allen Institute for Brain Science) models [24]. For the current situation to
change, large-scale data acquisition and training efforts will need to be combined
with better integration of local field potential calculating tools. In addition, the
discovery of memory-efficient task-balancing techniques for multi-task learning
will be necessary in complement to such efforts.

• We have taken initial steps to expand deep learning models to be able
to simultaneously predict membrane potentials in each compartment of
a biophysically-detailed neuron model. In theory, this should suffice
to calculate local field potentials. In practice, integration of distilled
neuron models with tools such as LFPy still needs to be completed and
optimised [25, 26].

• Task balancing can be necessary in multi-task learning to avoid a limited
number of tasks from dominating the loss function. A two-step optimization
technique from transfer-learning called model agnostic meta-learning has
shown great promise in this regard [27, 28]. Unfortunately, this technique is
currently limited to models with a small amount of trainable parameters.

• Questions regarding the importance of diversity among experts during and
after training remain open. For instance, it remains unclear whether or
not diversity measures can be used as effective regularisers for multi-task
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learning. As seen in the other projects of this dissertation, there is also
an unmet need for a unified framework for measuring and interpreting
computational diversity.

Contributions Made During the PhD

In addition to the research discussed above, the three year period covered by these PhD
studies also included several other academic contributions such as teaching, supervision
and outreach. In addition, 30 credits of coursework were completed as part of the PhD
studies. The research discussed in this dissertation was disseminated through several
poster presentations, one oral presentation and two peer reviewed publications. An
overview of these contributions is provided in this section. For convenience, these
contribution are grouped into three categories: (1) teaching, outreach and supervision,
(2) research results and publications, and (3) courses and reports.

Teaching, Outreach and Supervision
No formal teaching requirements were part of the PhD contract, but informal contacts
led to the participation of the author of this dissertation in minor teaching duties. Every
year, the University of California, San Diego, the University of Oslo, and Simula
Research Laboratory Simula organise a summer school in computational physiology.
In the 2021 edition, the author of this dissertation gave a lecture at this summer school
titled Integrating Omic Data and Computational Simulations in Neurological Models of
Schizophrenia. Similarly, for the Norwegian Artificial Intelligence Research Consortium
(NORA), a Norwegian collaboration between eight universities, three university colleges
and five research institutes, the author contributed to a workshop on AlphaFold v2.0
and RoseTTAFold with a session on the practical use of these tools. This workshop
was hosted by NORA in collaboration with the University of Oslo, dScience, Elixir
Norway, Oslo Cancer Cluster and the Centre for Digital Life Norway, and recordings of
the sessions can be found online.

Pint of Science is an international organisation that aims to bring researchers from
cities across the world into local pubs, bars or public spaces to share and discuss their
research findings with a general audience. For Pi-day, celebrated on March 14th 2022,
Pint of Science Norway organised a podcast special on the topic of applied maths and
biology. Together with Dr. Vegard Vinje (Simula research laboratory) and Assistant
Prof. Leiv Øyehaug (OsloMet), the author of this dissertation was invited to discuss
how mathematical modelling can be used to better understand biology. The episode is
available on most well-known podcast platforms. The Centre for Digital Life Norway
is a national centre for biotechnology research, education and innovation focussed
on transdisciplinary collaboration. At their annual conference Digital Life Norway
organises a scientific image exhibition and competition. In 2022, the author participated
in this competition with a 3D rendered image of neuroreceptors.

Since the spring semester of 2022, the author has been involved in the supervision
of several master students with regards to their master thesis. At first, this consisted
of support for prof. Gaute Einevoll’s spesialpensum regarding biophysically-detailed
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neuron models and specifically the Allen mouse primary visual cortex model. In the
academic year 2022-2023, the author took on the role of main supervisor for two masters
students (Sebastian Amundsen and Maria Lunde) and the role of secondary supervisor
for one masters student (Marcus Berget). Sebastian’s research work has focussed on the
distillation of biophysically-detailed neuron models as discussed in this dissertation and
Maria’s work focusses on the distillation of the Victor–Purpura spike synchrony metric
into a Siamese neural network. Details of their research will be made available in their
respective master theses, which are expected to be submitted in the spring semester of
2023. The topic of Marcus’ project is related to extending inception loops to a variety
of neural data types.

Research Results and Publications
The research outlined in this dissertation, which was conducting as part of a PhD
fellowship awarded by the University of Oslo, resulted in two peer reviewed publications,
several poster presentations, and one oral presentation at a conference. Multiple other
research projects are in the final stages of completion and are expected to result in
publications in the near future. Reproductions of the manuscripts included in the
dissertation can be found in the pages directly following the current chapter. A survey of
those research publications and presentations is provided here, together with an overview
of publications expected in the near future. Where applicable, the author’s specific
contributions are provided as corresponding to the official co-author declarations.

Illuminating Elite Patches of Chemical Space
This paper introduced quality-diversity techniques to single objective optimisation
for small molecules and was published in Chemical Science in September 2020.
The paper was co-authored with Dr. Jeriek Van den Abeele. The author of this
dissertation was responsible for the initial GB-EPI concept and implementation
of the main code, as well as the refactoring of the code into a public Python
repository. The author also contributed to discussions regarding the performance
studies and led the writing of the paper, especially in sections two and four.

Graph-Based Molecular Pareto Optimisation
This paper introduced the use of chemical diversity and the dominated hypervol-
ume indicator to the study of non-dominated sorting genetic algorithms for Pareto
optimisation of small molecules. The paper was published in Chemical Science
in June 2022 and is the result of a single-author project. Hence, the author of this
dissertation was responsible for all aspects of this paper.

Multi-task Learning of Biophysically-Detailed Neuron Models
In this research project we aim to distil biophysically-detailed neuron models
into multi-task learning architectures. The initial concept and implementation
have been shared between the author of this dissertation and Kosio Bechkov.
Implementation of the hard parameter sharing model was partially carried out by
Sebastian Amundsen. Useful references to relevant literature have been provided
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by Dr. Torbjørn Vefferstad Ness and Prof. Gaute Einevoll. The project is ongoing
and expected to result in a journal publication in the near future.

Isometric Representations in Neural Networks Improve Robustness
In this paper, which is in the process of resubmission, we enforced the
conservation of metric structure during the training of artificial neural networks
to obtain isometric and robust within-class representations. Kosio Bechkov is the
main author of this paper. The paper is co-authored by Dr. Mikkel Elle Lepperød
and the author of this dissertation. The latter was responsible for refactoring of
parts of the code and supported the writing and original submission of the paper.

Morta: A Multi-Dimensional and Representative Archive of Molecules
For this project, the author of this dissertation and (former) members of the
Canadian biotech company Cyclica have come together to create representative
down-sampled archives of large molecular databases through the use of quality-
diversity techniques and chemical diversity measures. Details regarding the
distribution of responsibilities in this public-private partnership and a manuscript
describing the obtained results will be available in the near future, as will open-
source results and the code generated for this project.

Oral Presentation at the Nordic AI Meet
In November 2022, the author of this dissertation presented an oral presentation
titled Distilling Computational Neuroscience at the second Nordic Conference for
Young AI researchers (Nordic AI Meet) in Oslo. In this talk, the previously
discussed work on distilling biophysically-detailed neuron models and the
Victor–Purpura spike synchrony metric were presented. This presentation paper
was co-authored by Kosio Bechkov and Prof. Gaute Einevoll, both of whom
supported abstract submission and design of the slides for the presentation.

Poster Presentations at the FENS Forum and the Bernstein Conferences
The author of this dissertation had abstracts for poster presentations accepted at
the Federation of European Neuroscience Societies (FENS) Forum in Paris and the
Bernstein Conferences in Berlin, which took place in July and September of 2022
respectively. Both poster presentations covered topics related to biophysically-
detailed neuron models, disease models for severe mental disorders, and the
4MENT collaboration in general.

Courses and Reports
As part of a PhD Degree at the Faculty of Mathematics and Natural Sciences at the
University of Oslo, 30 credits of coursework and a scientific dissertation have to be
successfully completed. The written part of the dissertation is presented in this document,
and the oral part will be presented in a trial lecture and public defence. The 30 credits of
coursework were obtained through the successful completion of the following courses:
Science, Ethics and Society (MNSES9100, five credits), Communicating Scientific
Research (Simula, five credits), Molecular Medicine (MF9120BTS, ten credits), and
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Computational Neuroscience (FYS388, ten credits). As part of these courses, a number
of reports were written on topics ranging from vaccine equity to personalised medicine.

Concluding Remarks

As discussed throughout this dissertation, schizophrenia and bipolar disorder are among
the most human of diseases. No other species of animal is known to suffer from either of
these disorders and important genetic risk factors are lodged deep inside the most human
parts of our DNA. Yet, for much of recorded history, severe mental disorders and the
behaviour they cause were seen as a sign of the supernatural. Even though these beliefs
gradually faded, it took until the turn of the 20th century before moral judgements were
sufficiently contained to earnestly apply the scientific method to mental disorders. Initial
scientific progress was fast – only 44 years passed between the coining of the term
schizophrenia by the the Swiss psychiatrist Paul Eugen Bleuler and the discovery of
the first antispychotic medication – but in the past decades, we have witnessed painful
stagnation in the study and treatment of psychosis and mood disorders.

Current antipsychotic treatments can only help a small fraction of patients affected by
severe mental disorders and simultaneously carry a risk of intense and potentially deadly
side-effects. On average, patients diagnosed with severe mental disorders suffer from a
reduction in life expectancy of more than a decade and the gap in life expectancy with
the general population keeps growing. A student once famously asked the anthropologist
Margaret Mead what she considered to be the first sign of civilization. Her answer was
simple: A healed femur. Mead explained that the first sign of civilization is neither
a clay pot nor an early weapon but the emergence of compassion, exemplified in the
protection and companionship necessary to mend a complex bone fracture. Whether
or not history will judge the first decades of the 21st century as a turning point or a
failure in humanity’s quest to extend this care to its most vulnerable members is yet to
be decided.

Will we find the courage and humility to accept that severe mental disorders
can affect any of us – directly or indirectly – and invest in accessible and life-long
psychosocial support for society at large? Will we fund dedicated interdisciplinary
research groups and create extensive public-private partnerships to bring novel treatment
plans to patients? Will we outgrow our childhood fears and learn to treat severe mental
disorders without stigma or distrust? Only time will tell. . . but we have to rely on that
old adage, scientia vincere tenebras, and keep trying to cure or prevent these diseases.
Now more than ever, science and society have the tools and knowledge at their disposal
for great improvement in prophylactic and curative treatments of schizophrenia and
bipolar disorder. This much I know to be true.
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I

Abstract

In the past few years, there has been considerable activity in both academic and
industrial research to develop innovative machine learning approaches to locate
novel, high-performing molecules in chemical space. Here we describe a new
and fundamentally different type of approach that provides a holistic overview of
how high-performing molecules are distributed throughout a search space. Based
on an open-source, graph-based implementation [J. H. Jensen, Chem. Sci., 2019,
10, 3567–3572] of a traditional genetic algorithm for molecular optimisation, and
influenced by state-of-the-art concepts from soft robot design [J. B. Mouret and
J. Clune, Proceedings of the Artificial Life Conference, 2012, pp. 593–594],
we provide an algorithm that (i) produces a large diversity of high-performing,
yet qualitatively different molecules, (ii) illuminates the distribution of optimal
solutions, and (iii) improves search efficiency compared to both machine learning
and traditional genetic algorithm approaches.
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I. Illuminating Elite Patches of Chemical Space

I.1 Introduction

Recent years have seen a surge [1–10] of machine learning (ML) papers focused on
generating de novo molecules optimised for performance with regard to a chosen
objective function, e.g. melting point [11] or binding affinity to a target protein [12].
These ML models aim to generate chemical compounds which exhibit desired behaviour,
without reverting to explicit chemical rules, patterns or transformations. Instead, ML
models learn from experimental data, and attempt to extrapolate the relevant aspects
of the underlying chemistry. In terms of performance, however, ML models for
molecular optimisation are rivalled by more traditional and often simpler, rule-based
approaches [13, 14] such as genetic algorithms (GA).

In this paper, we introduce a novel rule-based algorithm which we call graph-based
elite patch illumination (GB-EPI). This algorithm enforces diversity among a set of
high-performing molecules and leverages [15–18] them to obtain efficient optimisation.
In addition, GB-EPI provides the user with a map relating the performance of generated
molecules to chosen physicochemical properties. The algorithmic methodology of
GB-EPI is discussed in the section, followed by results of standard benchmarks and
an in-depth comparative efficiency analysis between a graph-based genetic algorithm
(GB-GA) and GB-EPI.

I.2 Algorithmic Methodology

The goal of a classical optimisation algorithm is to obtain the highest performing
solution in a search space. If the exact mathematical form of the evaluation function
is inaccessible, as is typically the case in molecular optimisation, heuristic search
methods [19] become a necessity. Many of these heuristic methods are inspired by
biological phenomena. Genetic algorithms [20, 21] are based on the theory of evolution
and aim to optimise with regard to an evaluation function, incrementally improving on
existing solutions. Specifically, novel solutions are generated by randomly changing
or stochastically combining solutions from the existing population. In the genetic
algorithm community, these two operations are respectively known as mutations and
crossovers. Solutions found by genetic algorithms are called phenotypes and each
solution is described by an underlying genome. The performance of a solution with
respect to the chosen evaluation function is known as the fitness of a phenotype.

Genetic algorithms can be highly effective in straightforward optimisation problems,
but are known to struggle [22, 23] when trying to cross low-performing valleys or
to break out of local optima, and both of these occurrences can lead to evolutionary
stagnation. We have based GB-EPI on an existing genetic algorithm for molecular
optimisation, but evade evolutionary stagnation by enforcing molecular diversity.
Moreover, GB-EPI speeds up the optimisation process by decoupling mutations from
crossovers, and introduces the concept of positional analogue scanning to genetic
algorithms. These and other technical aspects1 of GB-EPI are discussed in the upcoming
paragraphs.

1A lightweight, open-source version of the GB-EPI algorithm is available for download at https:
//github.com/Jonas-Verhellen/argenomic.
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Algorithmic Methodology

I.2.1 Graph-Based Genetic Algorithm
The current leading rule-based model for molecular optimisation is the graph-based
genetic algorithm [14] (GB-GA). In GB-GA, genomes of molecules are encoded by their
molecular graphs. Novel molecules are generated by mutating or combining the graphs
of molecules in the existing population. The initial population of candidate molecules
is typically obtained from freely accessible molecular data-sets like ZINC [24] or
ChEMBL [25]. Every generation, as a form of selection pressure, only the most fit
molecules (with respect to the evaluation function) present in the population are retained.

This paper, and hence our algorithm, builds on the conceptual developments made
in GB-GA by continuing to work with molecular graphs as genomes. We maintain the
graph-based aspect of the crossover and mutation operators, but apply crossovers and
mutations in parallel instead of sequentially. Our motivation for decoupling these two
operators lies in the fact that crossovers customarily only support efficient exploration
of chemical space in the early generations of a genetic algorithm. Later on, the nearly-
converged solutions are typically only improved by the comparatively smaller effects of
mutations.

I.2.2 Multi-Dimensional Archive of Phenotypic Elites
The multi-dimensional archive of phenotypic elites algorithm [16] (MAP-Elites) is
a simple, efficacious and surprisingly powerful tool developed in the context of soft
robot design, and serves as the core architecture of our GB-EPI algorithm. MAP-Elites
mimics diversity in biological evolution and explores the search space by introducing
the concept of niches [26–28] to genetic algorithms. In MAP-Elites, candidate solutions
are generated by a genetic algorithm but are assigned to different niches depending on
their characterising features. Each generation, the best performing solution in each of
the individual niches – with respect to a global evaluation function – is retained.

Dividing the search space into feature-based niches and explicitly enforcing
population diversity stands in stark contrast with classical genetic algorithms which
typically only retain the top high-scoring solutions regardless of their diversity, or lack
thereof. The enforced variation between niches makes crossovers more diverse, and
by mutating existing solutions, potent scaffolds can spread into other niches. Most
importantly, because at every generation MAP-Elites contains solutions spread out over
feature space, diverse solutions in far-away niches can be used a resource to escape
stagnation. In Figure I.1 we provide pseudocode of the MAP-Elites algorithm for de
novo molecule design as applied in GB-EPI.

In practical terms, users of GB-EPI can choose their own features of interest, and
define relevant ranges of variation to construct a feature space. If, for instance, a user
wants to find medicinally relevant molecules in chemical space, they could construct
a feature space based on physicochemical properties like lipophilicity and molecular
mass, and practical concerns like synthetic accessibility. The chosen ranges in which
to explore these features can be used to specify a desired subset of chemical space in
which to generate new molecules.

The fitness score obtained by the molecule occupying a niche at the end of a GB-EPI
run represents the capability of the corresponding part of feature space to contain high-
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I. Illuminating Elite Patches of Chemical Space

Algorithm: MAP-Elites for molecule generation in GB-EPI
Input: N – number of generations, M0 – initial population
P0← fitness(M0);
for i = 1→ N do

Mi←Mi−1,Pi←Pi−1 ;
M ′←mutation(Mi) + crossover(Mi);
for molecule in M ′ do

niche← features(molecule);
performance← fitness(molecule);
if performance > Pi−1[niche] then

Mi[niche]← molecule;
Pi[niche]← performance;

end
end
Result: MN – molecules, PN – performances

Figure I.1: Pseudocode description of the MAP-Elites algorithm adapted to the setting
of molecular optimisation.

performance molecules. In this way, GB-EPI illuminates the relationship between the
chosen features of interest and how varying them affects performance, either positively
or, equally relevant, negatively. As can be seen in Figure I.2, the molecules at the end of
a GB-EPI run form a patchwork of locally elite solutions (with respect to the chosen
evaluation function) in a part of chemical space.

(a) (b) (c)

Figure I.2: Illumination of a patch of elite solutions for the rediscovery of Troglitazone
after (a) 1 generation, (b) 200 generations, and (c) 400 generations. For this visualisation,
the feature space of GB-EPI was spanned by molecular mass and lipophilicity, and
divided into 200 niches. The starting population consisted of 100 random compounds
from a standardised subset of the ChEMBL database, further described in Section II.3.
The surface was obtained by interpolating, refining and triangulating the results. Darker
shading indicates higher Tanimoto similarities with respect to Troglitazone.
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Algorithmic Methodology

I.2.3 Centroidal Voronoi Tesselations

In a regular grid partition, the number of niches grows exponentially with the
dimensionality of feature space. To effectively partition high-dimensional feature
spaces into niches, we can rely on a technique from computational geometry called
the centroidal Voronoi tessellation [29–31] (CVT). The CVT can be used to create
a pre-defined number of niches, irrespective of the dimensionality of the feature
space. Because the number of niches is fixed, the use of a CVT partition in MAP-
Elites maintains selection pressure for performance, even in higher-dimensional feature
spaces [32].

A CVT is constructed by forming the lattice reciprocal to the cluster centroids of
a uniform distribution over feature space. Each of the lattice cells outlines the space
contained in a single niche. Computationally, the centroidal Voronoi tessellation can
be constructed by Lloyd’s clustering algorithm [33]. Efficient look-up of the nearest
centroid to a given point in feature space is necessary to determine the niche to which a
new solution belongs. Fortunately, this is made possible through fast multi-dimensional
tree algorithms [34].

I.2.4 Positional Analogue Scanning and Memoisation

Changes in molecular interactions and physicochemical properties resulting from small
molecular structure modifications are used in in vitro medicinal chemistry to optimise
lead compounds [35]. To minimise the number of experimental design cycles in lead
optimisation, medicinal chemists apply small structure modifications in systematic
batches, in a procedure known as positional analogue scanning [36]. During this
procedure, series of molecular analogues of a lead compound are generated by the
systematic exchange of heteroatoms or functional groups, and rapidly evaluated.

Similar to the small structure modifications used in the lab, GB-GA uses molecular
mutations to work towards compounds with desired properties. Inspired by the success
of positional analogue scanning, we repurpose the mutation operator in GB-EPI to
systematically return not just a single mutated molecule, but all of its positional
analogues. This approach accelerates convergence by allowing a potent design to
spread out to several niches in a single generation. To speed up convergence even
further, we extend the mutation operator to allow for the addition and removal of
user-specified functional groups.

Memoisation [37] is a computational technique that ensures that a program does not
unnecessarily repeat calculations, by keeping an on-the-fly record of obtained results.
To balance memory and efficiency, the set of remembered results is typically limited to
a fixed size and controlled by a first-in-first-out replacement algorithm. In this paper,
memoisation was applied to fitness calculation, as this often carries the prohibitive
computational cost, but memoisation can be readily extended to the other calculations
in the algorithm. We note that memoisation can be used to reduce or even fully resolve
the computational overhead introduced by positional analogue scanning.

85
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I.2.5 Filters and Parallelism
To rule out unwanted and potentially toxic molecules, we use functional group
knowledge from the ChEMBL database [25] and a combination of ADME property
calculations [38–40]. We remove undesirable compounds before they enter the
evaluation step of the algorithm. Removing these compounds at an early stage makes
the algorithm more efficient, increases the predictive value of the final outcome, and
significantly decreases overall processing time.

To reduce clock time, we implemented a concurrent version of GB-EPI. The program
distributes function evaluations, mutations and crossovers over a CPU/GPU architecture
and receives performance scores, new molecules and behavioural descriptors from the
individual nodes. Concurrency has no effect on the overall results obtained by the
algorithm. All of the experiments in this paper can be reproduced either with or without
concurrency.

I.3 Results and Benchmarks

To standardise the assessment of models for de novo molecular design, the bioinformatics
company BenevolentAI released a benchmarking suite named GuacaMol [13]. The
suite is open source and is meant to provide researchers with a variety of molecular
optimisation tasks, related to the basic needs of computational and medicinal chemists.
In this paper, we use GuacaMol as a starting point to quantify the performance of GB-
EPI. We present and compare the results on the selected benchmarks for a deep-learning
algorithm (SMILES LSTM), a rule-based algorithm (GB-GA), and the illumination
algorithm GB-EPI presented in this paper.

SMILES LSTM [41] is a deep learning model for de novo molecule generation,
based on natural language processing and reinforcement learning. SMILES LSTM uses
a simple text representation of molecules known as Simplified Molecular-Input Line-
Entry System [42] (SMILES) strings and trains a recurrent neural network (RNN) as a
statistical language model for these textual descriptors of molecular structures. To obtain
numerical stability in training through back-propagation, the RNN is enhanced with
long short-term memory [43] (LSTM) cells, making it capable of learning dependencies
from larger collections of information.

After the SMILES LSTM model is sufficiently trained to produce chemically
feasible SMILES strings, reinforcement learning [44] is applied to bias the generation
of new chemical structures towards molecules with the desired chemical properties.
Reinforcement learning is powerful, yet brittle; initialisation of the underlying LSTM
network and the hyperparameters of the reinforcement learning algorithm must be done
carefully. If successful, however, SMILES LSTM is able to cover and explore a large
portion of chemical space [45].

In this paper, we run both SMILES LSTM and GB-GA in their standard GuacaMol
baseline implementations [13]. In particular, for each rediscovery target, the GB-GA
algorithm was run with a mating pool of 200 molecules for a total of 1,000 generations,
unless there was no improvement for 5 consecutive generations. The SMILES LSTM
baseline is a pre-trained recurrent neural network model, further optimised for each
specific benchmark over 20 epochs by means of a hill-climbing algorithm. Each epoch
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the model generates 8192 molecules, of which the best 1024 are used to steer the
reinforcement learning algorithm for further tuning.

I.3.1 Rediscovery of Small Molecule Drugs
Rediscovery benchmarks, which require the explicit rediscovery of a target molecule
on top of scoring for similarity, are a common potency test for de novo molecule
generating models. By requiring explicit rediscovery, these benchmarks are more robust
against exploitation [46] of metric deficiencies by generative models than - for instance -
similarity metrics with a thresholded linear score modifier [13]. The similarity between
a generated molecule and the target compound is determined by the Tanimoto similarity
of their extended-connectivity fingerprints [47] (ECFPs).

ECFPs are circular topological fingerprints, meaning that they encode molecular
structures in terms of concentric atomic neighbourhoods. These fingerprints were
originally [48] designed for similarity searching in high-throughput screening, but have
also found applications in chemical clustering and compound library analysis. The main
advantage of ECFPs, compared to more involved similarity measures, is that they can
be rapidly calculated and inherently represent the presence or absence of molecular
substructures.

In GuacaMol, three marketed and FDA-approved drugs are proposed as targets for
rediscovery: Celecoxib (an anti-inflammatory), Troglitazone (an antidiabetic), and
Thiothixene (an antipsychotic). Together, these three ligands cover a wide range
of physicochemical properties and pharmacological applications. To increase the
effectiveness of the benchmarks, molecules highly similar to the targets (bit-vector
Tanimoto similarity above 0.323) were removed by GuacaMol from the database of
initial molecules. That initial database is derived from ChEMBL, which exclusively
consists of molecules that have both been synthesised in a lab and tested against
biological targets.

To set up GB-EPI for the rediscovery benchmarks, we chose the feature space to
be spanned by molecular mass, 140 u. to 520 u., and lipophilicity, logP = −0.4 to
logP = 5.6. The ranges were chosen to roughly correspond to properties of orally
active drugs, and the space was feature subdivided into 150 niches. More complex,
higher-dimensional feature spaces are possible and often advisable, but here we limit
the algorithm to its simplest form. The number of generations for GB-EPI was limited
to a maximum of 400.

GB-EPI is successful in rediscovering these three drug-like molecules, just as
SMILES LSTM and GB-GA. Whereas the power to differentiate between models
through these GuacaMol rediscovery tasks can hence be debated, these simple tasks do
give insight in the properties of the algorithms. The letter-value plots [49] in Figure I.3
show that the three distributions obtained by the algorithms at the end of each of the
GuacaMol rediscovery benchmarks are highly distinct from each other. Whereas the
GB-GA population provides a concentrated group of high-scoring molecules, SMILES
LSTM generates a broad distribution of molecules with a few high-scoring outliers.

GB-EPI combines diversity with local selection pressure, and the obtained
population distributions reflect this by having median scores above those of SMILES
LSTM, and a more balanced spread than the distributions of GB-GA. While GB-GA
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Figure I.3: Letter-value plots [49] of the final molecule distributions obtained by GB-
EPI, SMILES LSTM, and GB-GA for the GuacaMol rediscovery benchmarks in terms
of Tanimoto similarity to the target. The length of the innermost box represents the
interquartile range, whereas the protruding boxes represent subsequent interquantiles
(i.e. interoctiles, intersedecimiles, ...). The horizontal line marks the median, while
outliers (conventionally assumed to be the outer 0.7% of the population) are shown as
individual diamonds beyond the largest interquantile displayed.

only retains the highest-scoring molecules in its population, GB-EPI deliberately keeps
lower-scoring molecules that are the best in their niche. In fact, the GB-GA median
lies near the bottom of the narrow interquartile range because most of the molecules
proposed by GB-GA have high internal similarity [22] and hence nearly identical scores.

I.3.2 Simultaneous Similarity for Conflicting Compounds
In a median molecules benchmark, the goal is to maximise similarity to several small-
drug molecules simultaneously. The standard GuacaMol benchmark starts from the
highest scoring molecules in the ChEMBL subset described in Section I.3.1. These
benchmarks are explicitly designed to be conflicting and can be regarded as challenging
tasks. The GuacaMol benchmarking suite provides two of these tasks: Camphor vs.
Menthol (two topical antitussives) and Tadalafil vs. Sildenafil (two drugs used to treat
erectile dysfunction and pulmonary hypertension).

To increase the real-world relevance of these benchmarks, we filter out molecules that
contain macrocycles, fail at Veber’s rule [40], or raise structural alerts from ChEMBL.
The feature space of GB-EPI was again chosen to be spanned by lipophilicity and
molecular mass. For both benchmarks, the feature space of GB-EPI was divided into
200 niches and the algorithm ran for 600 iterations. Furthermore, the GB-GA algorithm
was only halted after 50 consecutive iterations without progress.
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(a) Camphor vs. Menthol

(b) Tadalafil vs. Sildenafil

Figure I.4: Distribution of proposed median molecules – coloured and highlighted by
algorithm type – for the conflicting targets in the GuacaMol benchmarks, after filtering
out structurally problematic molecules from the 100 highest-scoring ones. For Camphor
vs. Menthol, the ranges of feature space for GB-EPI were chosen to be logP =−0.4
to 5.6, and 100 u. to 350 u. For Tadalafil vs. Sildenafil, the ranges were logP =−0.4
to 5.6, and 350 u.to 600 u. GB-EPI’s inherent strategy to explore broader swaths of
chemical space in an optimisation problem is clear in both figures. In contrast, the
molecules proposed by GB-GA are focused around small regions of high-scoring median
molecules.

As shown in Table I.1 and Figure I.4, these median molecules benchmarks are
far more strenuous than the rediscovery benchmarks and can differentiate between
the different models more accurately. Here, SMILES LSTM scores lower than the
rule-based algorithms GB-GA and GB-EPI. To ensure an accurate comparison between
the three generative models, two of which are pure optimisation algorithms (SMILES
LSTM, GB-GA) and one of which (GB-EPI) balances quality and diversity, we only
recorded the single highest score obtained by each algorithm.

To make the benchmark more informative, we also recorded the results for all
algorithms on both benchmarks for a completely random subset of the standardised
dataset. In the randomised subset benchmarks, GB-GA and GB-EPI begin with 100
arbitrary compounds, whereas the SMILES-LSTM model is pre-trained on a larger set
of molecules from the same collection but not hyper-tuned by top scoring molecules
from the dataset. Both SMILES LSTM and GB-GA have trouble crossing the larger
distance in chemical space to the median molecules and score significantly lower than
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Table I.1: Results for the Maximum Median Molecule

Benchmark GB-EPI SMILES LSTM GB-GA
Standard
Camphor vs. Menthol 0.419 0.415 0.419
Tadalafil vs. Sildenafil 0.453 0.422 0.453
Randomised
Camphor vs. Menthol 0.419 0.400 0.345
Tadalafil vs. Sildenafil 0.370 0.368 0.313

GB-EPI.

I.3.3 Comparing Efficiency of GB-EPI and GB-GA
To study the difference in efficiency of GB-EPI and GB-GA, we make a statistical
analysis of a representative rediscovery task (Troglitazone). In line with earlier work [14,
50] on the efficiency of GB-GA, we calculate the average number of fitness function
evaluations and CPU time needed for rediscovery, and the rediscovery success rate
of both algorithms. As we learned from the median molecule task, starting from a
randomised set of molecules elucidates the exploratory power of the algorithms more.

Therefore, we start this rediscovery task with the 100 top-scoring molecules from
10,000 molecules randomly chosen from a 1.6 million ChEMBL subset, as constructed
by Henault et al. [50]. In this subset all molecules with a bit-vector Tanimoto similarity
to the target above 0.323 are removed [13]. Table I.2 shows the results for 100 runs
of GB-EPI and GB-GA (with settings taken from Henault et al. [50]), both with a
maximum of 1,000 generations per run.

Table I.2: Efficiency of GB-EPI and GB-GA in the rediscovery of Troglitazone, in
terms of the average number of required score evaluations and CPU time in the case of
a successful run, and the overall success ratio over 100 independent, randomly seeded
runs of both algorithms.

Algorithm Evaluations CPU Time Success Ratio
GB-EPI 14,258 3 min. 5 sec. 100 %
GB-GA 24,216 11 min. 37 sec. 81 %

While chemical space consists of an estimated 1060 molecules, it has been
argued [50] that the perfect, omnipotent search algorithm would be able to find
small drug-like molecules (i.e. excluding peptides, antibodies, . . . ) in a few
hundred transformation operations (crossovers and mutations) and corresponding fitness
evaluations. With this idealised benchmark in mind, it can be observed from Table I.2
and Fig. I.5 that GB-EPI makes a sizeable improvement (approx. 41%) to the average
number of function evaluations needed for rediscovery. Similarly, we note that the
average CPU time needed for rediscovery decreased starkly (approx. 73%) in GB-EPI
compared to GB-GA.
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Figure I.5: Distribution of the number of score function evaluations necessary for
the rediscovery of Troglitazone and corresponding cumulative success rate, for 100
independent runs of GB-GA (blue) and GB-EPI (orange). Both distributions are shown
on the same scale.

In addition, the success ratios affirm that GB-GA suffers from stagnation issues,
whereas GB-EPI can leverage molecular diversity to escape local optima of the scoring
metric. The success rate of GB-GA for this rediscovery is 81%, meaning that at least 3
GB-GA searches are needed for the rediscovery to succeed with at least 99% certainty.
Taking this into account would further increase the number of score evaluations to about
70.000 before an expected successful rediscovery. Similarly the expected CPU time
before rediscovery by GB-GA will be of the order of 35 minutes.

I.4 Conclusion and Outlook

This paper introduces the concept of illumination to de novo molecule generating
algorithms through an algorithm called GB-EPI. Previous molecular optimisation
algorithms, like SMILES LSTM and GB-GA, aim to obtain the highest performing
solution in chemical space. In contrast, our novel algorithm constructs a whole patch of
high-performing solutions spread out over niches covering a selected part of chemical
space. By exploring what is chemically possible, in addition to leveraging diversity to
efficiently discover what is purely optimal, GB-EPI illuminates design trade-offs and
encourages synergy between design algorithms and human chemists.

For instance, researchers wishing to understand how the binding affinity with a target
protein changes with physicochemical properties of an inhibitor could use GB-EPI to
scan a feature space spanned by the lipophilicity, molar refractivity, and mass of the
candidate molecules. In contrast, an industrial chemist could find more use in a feature
space spanned by estimated production costs and synthetic accessibility. In both cases,
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molecules that are predicted to have a desired combination of properties can easily be
selected for further examination.

Future extensions of GB-EPI could include adaptive meshing of the centroidal
Voronoi tessellations [51] to increase the number of niches in the most suitable regions of
feature space, surrogate modelling techniques [52, 53] to reduce the number of necessary
fitness function evaluations, or crossovers based on intermolecular correlations [54]. In
addition, deep learning models could be trained to predict which mutations are most
beneficially applied to which molecules. Combined, these extensions have the potential
to significantly speed up the current GB-EPI algorithm.

Some attention should also be drawn to the exciting prospect of steering GB-EPI by
direct experimental feedback. Through active learning [55] – a small-data alternative
to deep learning – and graph-based retrosynthesis [56, 57], molecules proposed by
GB-EPI could be selected for in vitro synthesis and analysis.2 The experimental results
could then be used to update the fitness model. The practical aspects of this iterative
loop could perhaps even be executed autonomously by a robotics platform, creating a
self-driving laboratory [59] for molecular design.
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Abstract

Computer-assisted design of small molecules has experienced a resurgence in
academic and industrial interest due to the widespread use of data-driven techniques
such as deep generative models. While the ability to generate molecules that
fulfil required chemical properties is encouraging, the use of deep learning models
requires significant, if not prohibitive, amounts of data and computational power.
At the same time, open-sourcing of more traditional techniques such as graph-based
genetic algorithms for molecular optimisation [Jensen, Chem. Sci., 2019, 12, 3567-
3572] has shown that simple and training-free algorithms can be efficient and robust
alternatives. Further research alleviated the common genetic algorithm issue of
evolutionary stagnation by enforcing molecular diversity during optimisation [Van
den Abeele, Chem. Sci., 2020, 42, 11485-11491]. The crucial lesson distilled from
the simultaneous development of deep generative models and advanced genetic
algorithms has been the importance of chemical space exploration [Aspuru-Guzik,
Chem. Sci., 2021, 12, 7079-7090]. For single-objective optimisation problems,
chemical space exploration had to be discovered as a usable resource but in multi-
objective optimisation problems, an exploration of trade-offs between conflicting
objectives is inherently present. In this paper we provide state-of-the-art and
open-source implementations of two generations of graph-based non-dominated
sorting genetic algorithms (NSGA-II, NSGA-III) for molecular multi-objective
optimisation. We provide the results of a series of benchmarks for the inverse
design of small molecule drugs for both the NSGA-II and NSGA-III algorithms. In
addition, we introduce the dominated hypervolume and extended fingerprint based
internal similarity as novel metrics for these benchmarks. By design, NSGA-II, and
NSGA-III outperform a single optimisation method baseline in terms of dominated
hypervolume, but remarkably our results show they do so without relying on a
greater internal chemical diversity.

II.1 Introduction

Machine learning has recently assumed a prominent role [1] in chemistry: predicting
ADMET properties [2], supporting molecular dynamics simulations [3], and assisting in
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the design of small molecules without reverting to explicit rules or expert knowledge [4–
12]. However, training-free optimisation algorithms that comprehensively traverse and
explore chemical space have been shown to be more efficient [13, 14] than their machine
learning counterparts in discovering high-performing de novo molecules. Sometimes
this search in chemical space reduces to an optimisation for a single property like melting
point [15] or protein binding affinity [16], but often there are additional requirements that
make it necessary to optimise for additional properties such as low toxicity [17], high
synthesizability [18] or off-target activity. In the case that multi-objective optimisation is
necessary, a trade-off between different (and possibly competing) optimisation objectives
has to be defined.

objective 1

ob
jec

tiv
e 2

Figure II.1: Visualisation of a Pareto front (dark blue) and dominated solutions (light
blue). Example molecules shown at the Pareto front were generated by NSGA-II
for Tanimoto similarities with regard to lysergic acid diethylamide (objective 1) and
psilocybin (objective 2).

In current molecular generative model benchmarks [13], typically either the median
or the geometric mean of the objective is chosen as a stand-in aggregate fitness function.
To give relative importance to the different objectives, domain experts can assign
weights to them or combine appropriate modifying functions to obtain a single, fine-
tuned objective function. However, many fields of science and engineering make use of
an alternative approach to multi-objective optimisation by searching for a set of so-called
Pareto optimal solutions [19]. All solutions in a Pareto optimal set are characterised by
the fact that there are no other individual solutions that have a higher (or equal) fitness
in all objective functions. Together, the set of Pareto optimal solutions form an optimal
envelope in objective space known as the Pareto front, see Figure II.1.

The Pareto front provides a family of solutions, all equivalent in principle, aiding
domain experts to make choices when trade-offs between objectives are not known
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beforehand. Over the past two decades, a family of algorithms known as the non-
dominated sorting genetic algorithms [20] (NSGA) has been developed for finding
Pareto fronts. In a complex process, such as drug design, having access to a technique
complementary to single objective optimisation, can yield deeper insights and improve
efficiency. Therefore, in this paper, we provide the community with state-of-the-art and
open-source implementations of the NSGA-II and NSGA-III algorithms [21–23] based
on a popular graph-based genetic algorithm [24] (GB-GA) for molecular optimisation.

A newer generation of NSGA algorithm, NSGA-III, which uses a more complex
means of ensuring coverage of the entire Pareto front, was originally reported to be an
improvement over NSGA-II. However, later analyses [25, 26] have shown that for a
wide range of computational experiments NSGA-III does not consistently outperform
NSGA-II in every use-case. Therefor we compare the performance of NSGA-III and
NSGA-II on a set of small molecule multi-objective optimisation benchmarks, making
use of the dominated hypervolume as a novel measure of the effectiveness in these
type of problems. As a baseline, we make use of a state-of-the-art single-objective
optimisation algorithm that employs the geometric mean as a surrogate aggregate fitness
function. Whereas proprietary applications of NSGA-II to molecular design have been
reported [27, 28], there is a lack of open-source implementations of both NSGA-II and
NSGA-III for the inverse design of small molecules. We anticipate that our results
and the availability of the code will encourage the development of more powerful
Pareto optimisation algorithms for chemistry as well as their widespread adoption in
computer-assisted chemical design.

II.2 Algorithmic Methodology

NSGA-II and NSGA-III are genetic algorithms tailored to finding Pareto fronts. In this
section, we introduce the fundamentals of genetic algorithms in the context of small
molecule design and discuss the importance of balancing quality with diversity. We
then describe the general framework of non-dominated sorting genetic algorithms and
elaborate upon the NSGA-II and NSGA-III algorithms and their differences. In the
remainder of the section, we discuss technical aspects such as structural alert based
chemical filters, memoisation, the construction of reference directions (only used in
NSGA-III), positional analogue scanning, and parallelism.

II.2.1 Genetic Algorithms
A genetic algorithm is, as the name suggests, a heuristic search method [29] inspired
by the process of natural evolution. Genetic algorithms [30, 31] can achieve highly
effective single-objective optimisation by consistently and incrementally improving a
selection of trial solutions. The current set of the solutions used by the algorithm is
known as the (evolutionary) population. In each iteration of the algorithm – known as
a generation – novel solutions are generated by stochastically changing or combining
the current solutions. In the genetic algorithm community, these two operations for
generating new solutions are known as mutations and crossovers, respectively. At the
end of each generation, the population is reduced to its original size by selecting only
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the highest performing molecules for survival. Eventually, the selection pressure in this
procedure forces the population of solutions towards an optimum.

For small molecule optimisation, these ideas can be implemented by representing
solutions (i.e. molecules) by either their molecular graphs, or by text representation such
as the simplified molecular-input line-entry system [32] (SMILES) or self-referencing
embedded strings [33] (SELFIES). The graph representation has been used in the graph-
based genetic algorithm (GB-GA) which was shown to outperform machine learning
approaches [24]. In Figure II.2, we show examples of mutations and crossovers on
molecular graphs. To rule out graphs that represent impossible chemical configurations,
only those that can be correctly translated to and from SMILES are retained. The
initial population of candidate molecules is typically obtained from public databases
like ZINC [34] or ChEMBL [35].

Figure II.2: Examples of mutations (left) and a crossover (right) as generated by GB-
EPI. Note that minor changes to chemical structure can be used to efficiently achieve
optimisation even for challenging objectives.

II.2.2 Quality-Diversity Algorithms
Unfortunately, genetic algorithms are known to be vulnerable to evolutionary stagnation
when encountering low-performing valleys or local optima [36]. Enforcing diversity [37]
in the population of molecules a genetic algorithm uses can alleviate these issues.
Quality-diversity algorithms [38], such as the graph-based elite patch illumination
algorithm [39] (GB-EPI), obtain this diversity by splitting the population into niches
based on their physicochemical properties. In each generation, the best performing
molecule in each of the individual niches is retained, rather than selecting the highest-
scoring solutions regardless of their diversity.

Alternatively, the superfast traversal, optimisation, novelty, exploration and
discovery algorithm [40] (STONED) leverages molecular diversity through the use
of SELFIES. In contrast to the more traditionally used SMILES, SELFIES can be
mutated arbitrarily at any position in the string to produce new strings that represent
valid molecular structures. The STONED algorithm uses this property of SELFIES
to preserve diversity in its population. By varying the position of modification within
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the string, the algorithm balances exploration and exploitation to avoid stagnation in
low-performing valleys or local optima.

II.2.3 Non-dominated Sorting Genetic Algorithms

In contrast to single-objective optimisation problems, in which diversity had to be
discovered as a usable resource, diversity is inherently present in multi-objective
optimisation problems. The presence of diversity is most obvious when considering a
Pareto front, in which solutions to multi-objective optimisation problems must involve
trade-offs to satisfy the conflicting demands of different objective functions. Several
algorithms with different properties and varying levels of complexity have been proposed
for finding Pareto optimal fronts. The main class of algorithms used for this task are the
non-dominated sorting genetic algorithms, NSGA-II and NSGA-III.

Algorithm: Non-dominated Sorting Genetic Algorithms
Input: N – number of generations, M0 – initial population
for i = 0→ N do

Fi← fitnesses(Mi);
M ′←mutation(Mi) + crossover(Mi);
F ′← fitnesses(M ′);
fronts← sorting(M ′+Mi, F ′+Fi);
for front in fronts do

if splitting_front(front) then
Mi+1 ← splitting_procedure(front);

else
Mi+1 ← front;

end
end
Result: MN – molecules, FN – fitnesses

Figure II.3: Pseudocode description of a generic non-dominated sorting genetic
algorithm adapted to the setting of molecular optimisation.

Non-dominated sorting genetic algorithms [20] are, in essence, genetic algorithms
that evaluate and select on the Pareto dominating status of each solution in the
evolutionary population as shown in Figure II.3. Instead of selecting molecules based
on a fitness function, these algorithms sort all solutions into a series of fronts, see Figure
II.4 (a), each front dominated by the previous fronts. The first front (dark blue) is the
set of completely non-dominated individuals in the current population, the second front
(light blue) is the set of individuals dominated only by the individuals in the first front,
and so on for all other fronts formed by the remaining individuals in the population
(white). The algorithm accepts the fronts, with all of its individuals, into the evolutionary
population in ascending order, until the maximum size of the evolutionary population
has been reached.
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The final front accepted by a non-dominated sorting genetic algorithm might, and
often will, contain more individuals than can be added to the surviving evolutionary
population without exceeding its size limit. This set of individuals is known in the
multi-objective optimisation community as the splitting front [20]. Because there is no
difference between the individuals in the splitting front in terms of Pareto dominance,
further criteria are used to select which individuals are retained and which are discarded.
In the splitting front selection procedure for non-dominated sorting genetic algorithms,
this criteria is typically a measure of diversity. The NSGA-II and NSGA-III algorithms
both rely on a diversity criteria, but differ significantly in how they enforce this diversity,
see Figure II.4 (b) and (c).
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(b) NSGA-II
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(c) NSGA-III

Figure II.4: Visualisation of the splitting front procedure of non-dominated sorting
genetic algorithms: (a) The Pareto dominant front is shown in dark blue, the splitting
front is light blue, and the remaining solutions are white. For this example, the second
front is chosen as the splitting front, and it is assumed that five more solutions need to
be picked to complete the population. These solutions will be indicated with a dark
blue circumference. (b) The selection procedure of NSGA-II calculates a distance in
objective space to the nearest neighbours in the front. The outermost solutions are
picked by default, the remaining solutions are chosen according to the furthest distance
from neighbours. (c) The selection procedure of NSGA-III calculates the orthogonal
distance to predefined reference directions in objective space and selects the closest
solution for each axis. Note that the two objective axes are also used as reference
directions so that the outermost solutions are picked by default.

II.2.4 NSGA-II
NSGA-II [21] makes use of a crowding distance to differentiate within the splitting
front. The crowding distance is calculated for each individual, and indicates how closely
the individual is surrounded by the other members of the splitting front. For NSGA-
II, the crowding distance used is the Manhattan distance [41] in objective space. A
larger crowding distance indicates a less crowded individual. Within a splitting front,
NSGA-II orders all individuals by their crowding distances, and subsequently accepts
the molecules with the largest crowding distance into the evolutionary population until
the maximum size is reached. The outer solutions in the splitting front are assigned an
infinite crowding distance to ensure that they are retained in each generation.
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II.2.5 NSGA-III
In contrast to NSGA-II, the NSGA-III algorithm [22, 23], uses reference directions [42,
43] instead of a crowding distance to enforce diversity in the selection of solutions
within the splitting front. Reference directions are determined by a predefined set of
points on the unit simplex in fitness space. Each reference direction is defined as a ray
originating from the origin and passing through exactly one of these points. NSGA-III
assigns a reference direction to each solution in the population based on the nearest
perpendicular distance (in normalised fitness space) to the corresponding direction. In
the splitting front selection procedure, the NSGA-III algorithm prioritises reference
directions that are underrepresented in the current surviving evolutionary population.

If a reference direction does not have any solution assigned to it after reaching the
splitting front, then the molecule in the splitting front with the smallest perpendicular
distance to this direction is selected for survival. If all underrepresented reference
directions have been assigned one surviving solution, and the maximum size of the
surviving population has not been reached, the remaining solutions are selected by a
stochastic procedure. Note that NSGA-III selects the solutions in the fronts before the
splitting front in its entirety, like in NSGA-II. However, contrary to NSGA-II’s crowding
distance which is calculated within the splitting front, the reference directions used in
NSGA-III take into account the diversity of the entire surviving population.

II.2.6 Reference Directions
The reference directions determine the diversity in the selection of solutions from the
splitting front, so these directions are typically chosen to be well distributed over the
unit simplex. Traditionally the reference direction generation method of Das and Dennis
has been used for NSGA-III. Unfortunately, due to the highly structured (combinatorial)
nature of the Das-Dennis reference direction generating procedure [42], the method
cannot produce an arbitrary number of directions. In addition, it has been shown that
most of the reference directions generated by the Das-Dennis method cross through
the boundaries of the unit simplex rather than the interior [44], inducing a bias in the
selection of solutions from the splitting front.

To alleviate the issues of the Das-Dennis method, an energy-based approach has
recently been proposed [43] in the multi-objective optimisation literature. Inspired by
methods in physics, a generalisation of the potential energy called the Riesz s-energy [45]
is calculated for a given number of reference points on the unit simplex. The Riesz
s-energy Us is defined between two points p1, p2 in s-dimensional Euclidean space as,

Us(p1, p2) =
1

‖p1− p2‖s . (II.1)

The location of the points along of the unit simplex are then optimised to minimise the
combined Riesz s-energy of all the reference points. This allows for the construction
of an arbitrary number of well-spaced reference directions. The results in this paper
were obtained using the Riesz s-energy method to generate the reference directions
for NSGA-III, with s equal to the square root of the number of objective functions as
suggested in the original paper [43].
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II.2.7 Shared Technical Properties

We follow the example of GB-EPI [39] and include a series of minor but important
technical features to our NSGA-II and NSGA-III implementations, focused on improved
chemical optimisation or higher relevance and better quality of the generated molecules.
For instance, our NSGA-II and NSGA-III implementations make use of decoupled
crossovers and mutations. As shown in GB-EPI, early on in an evolutionary algorithm,
crossovers support the efficient exploration of chemical space, while later on local
mutations are beneficial in improving the nearly-converged solutions. Therefore it is
beneficial to apply both operators separately rather than in sequence.

Similarly, we follow the example of GB-EPI to apply the computational equivalent
of in vitro positional analogue scanning [46] by repurposing the mutation operator to
systematically return not just a single mutation of a molecule, but all of its positional
analogues. To offset the the computational overhead introduced by positional analogue
scanning and to improve efficiency in general, we store a record of obtained fitness
calculations. This approach is known as memoisation [47] and ensures that an algorithm
does not unnecessarily repeat calculations. To further reduce clock time, we also
implemented concurrency for the objective function evaluations and remove undesirable
compounds based on structural ADMET filters [48–50] before they enter the evaluation
step of the algorithm.

II.3 Benchmarks

To the test the potency of our open-source implementations of NSGA-II and NSGA-III
for multi-objective optimisation in drug design, we extend the use of tasks devised in the
GuacaMol benchmarking suite [13] by the bioinformatics company BenevolentAI. From
the suite we selected multi-parameter optimisation (MPO) tasks with three or more
objectives that aim to fine-tune the structural or physicochemical properties of five FDA-
approved drugs: Cobimetinib (a mitogen-activated kinase inhibitor), Fexofenadine (a
second-generation antihistamine), Osimertinib (a Tyrosine kinase inhibitor), Perindopril
(a long acting ACE inhibitor), and Ranolazine (an anti-anginal drug). We search for a
set of molecules that span the entirety of the Pareto front instead of trying to optimise a
single value like the geometric mean.

The objectives in these benchmarks, as shown in Table II.2, are either similarity
metrics that measure the distance to the corresponding drug molecule, or specific
properties such as the amount of rotatable bonds in a molecule, the topological
polar surface area [52] (TPSA) or the lipophilicity partition coefficient [53] (log(P)).
The similarity metrics are calculated using the Tanimoto similarity [54, 55], of the
fingerprints of the target and the generated candidate molecule. The fingerprints
used here are either extended-connectivity fingerprints [56, 57] (ECFP/FCFP) which
encode molecular structures in terms of concentric atomic neighbourhoods, or atom-
pair fingerprints [58] (AP) which encode molecules based on their atom pairs and
their bond distance. The main advantage of fingerprint-based similarities compared to
more involved similarity measures is that they can be rapidly calculated and inherently
represent the presence or absence of molecular substructures or atom pairs.
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Table II.1: Overview of the multi-objective optimisation benchmarks used in this paper,
the first five benchmarks are adapted from the Guacamol suite while the latter two
benchmarks were constructed to emulate the demands of poly-pharmacology projects.
The upper row of each task represents the values calculated for each objective. The
lower rows show the modifiers applied to each of these values. The fingerprints used
to calculate the similarities are denoted as arguments of the Tanimoto function, the
parameters used for the modifiers are displayed as arguments of the corresponding
functions. For the poly-pharmacology benchmarks, the genes targeted for activity
are indicated. The CNS function calculates the central nervous system desirability
score (high blood-brain-barrier permeability and low toxicity potential) as proposed by
Pfizer [51].

Task \ Objective I II III IV V
Cobimetinib

Tanimoto(FCFP4) Tanimoto(ECFP6) Rotatable Bonds Aromatic Rings CNS(0.5)
Clipped(0.7) MinGaussian(0.75, 0.1) MinGaussian(3, 1) MaxGaussian(3, 1) -

Fexofenadine
Tanimoto(AP) TPSA log(P) - -
Clipped(0.8) MaxGaussian(90, 10) MinGaussian(4, 1) - -

Osimertinib
Tanimoto(FCFP4) Tanimoto(ECFP6) TPSA log(P) -
Clipped(0.8) MinGaussian(0.85, 0.1) MaxGaussian(95, 20) MinGaussian(1, 1) -

Pioglitazone
Tanimoto(ECFP4) Molecular Weight Rotatable Bonds - -
Gaussian(0, 0.1) Gaussian(356, 10) Gaussian(2, 0.5) - -

Ranolazine
Tanimoto(AP) log(P) TPSA Fluorine Count -
Clipped(0.7) MaxGaussian(7, 1) MaxGaussian(95, 20) Gaussian(1, 1) -

DAP Kinases
hERG SCN2A DAPk1 DRP1 ZIPk
Gaussian(0, 0.1) Gaussian(0, 0.1) Clipped(0.8) Clipped(0.8) Clipped(0.8)

Antipsychotics
hERG 5-HT2A 5-HT2B DRD2 CNS(0.5)
Gaussian(0, 1.0) Clipped(0.8) Clipped(0.8) Clipped(0.8) -

The raw scores obtained from similarity or property measurements are post-
processed by modifier functions that map the scores to the [0, 1] interval and allow the
objective to be fine-tuned. The modifier functions used in this paper are Clipped(value),
Gaussian(mean, variance), MinGaussian(mean, variance), and MaxGaussian(mean,
variance). The Clipped modifier is a thresholded modifier in which values above a
given threshold are mapped to one, while values below threshold decrease linearly to
zero. The Gaussian modifiers target a specific value, returning high scores when the
underlying value is near the target. The Min and Max versions of this modifier map the
input value to one if it is lower or higher than the target value, respectively. For example,
in the Fexofenadine benchmark a molecule with a Tanimoto similarity higher than 0.8,
a TPSA above 90.0 and a log(P) below 4.0 would score perfectly on each objective.
More information on the modifiers can be found in the supplementary information
accompanying the Guacamol paper [13].

Precise evaluation of generative models in terms of their value to pharmaceutical
drug design programs can be challenging. To increase relevance, with respect to real-life
drug design projects, while maintaining the efficient benchmark evaluations necessary
for iterative design and statistical analysis, we integrate an existing data-driven surrogate

105



II. Graph-Based Molecular Pareto Optimisation

model for target activity into the Guacamol benchmarking suite [13]. We make use of
a previously proposed surrogate model [59], minding the separation of concerns [60],
that has been used to study failure modes in molecule generation. This model ranks
molecules based on the ratio of trees in a random forest classifier, trained on ChEMBL
activity data [35], predicting that the molecule is active. In the model, binary ECFP
fingerprints [57] of size 1024 and radius 2 are used as features.

In this paper, we provide two novel benchmarks for Pareto optimisation making use
of this model. Inspired by the demands of a multi-target drug discovery project [61],
we have constructed a multi-kinase inhibitor task and a multi-neuroreceptor binding
antipsychotics task. In the kinase inhibitor task, we aim for molecules that inhibit three
DAP kinases [62] (DAPk1, DRP1, and ZIPk) often implicated in cancer while trying to
avoid activity against common off-target ion channels [63, 64] (hERG, and SCN2A).
In the ongoing search for novel anti-psychotic medication, focus has shifted [65] to
combined binders of serotonergic receptors (5-HT2A, and 5-HT2B) and a more classical
target: the dopaminergic DRD2 receptor. In the multi-receptor antipsychotica task, we
target these three receptors, and aim to avoid an off-target ion channel (hERG) while
fulfilling the Pfizer central nervous system desirability requirements.
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Figure II.5: Timeseries plots with variance bands of the dominated hypervolume, the
maximum geometric mean, and internal similarity for the Cobimetinib (a,b,c) and
Fexofenadine (d,e,f) tasks as a function of generations of the evolutionary populations.
The mean value (solid line) and the 95% confidence interval (variance bands) over
twenty runs of NSGA-II (orange), NSGA-III (blue), and GB-EPI (green, optimising the
geometric mean) are shown. Details of the experimental setup for these results, including
hyperparameters, initial population and chemical filters are discussed in subsection II.4.
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II.3.1 Dominated Hypervolume
In multi-objective problems, tracking the evolution of an algorithm or measuring the
quality of a Pareto front with respect to a single parameter can be challenging. In
previous benchmarking efforts for optimisation algorithms of small molecules, the
geometric mean of the objectives has traditionally been used as both an aggregate
objective and as a metric. From a technical point of view, the geometric mean is the
exponential of the arithmetic mean of the log-transformed set of objective scores. As
a consequence, the geometric mean for strictly positive values is sensitive to severe
underperformance in any single objective, making it a relevant measure for many
multi-objective optimisation problems. However, other indicators of the quality of
Pareto fronts have been developed by the multi-objective optimisation community. One
such metric is the dominated hypervolume [66], which we introduce to the domain
of chemical optimisation as an alternative measure for multi-objective optimisation
benchmarks.

The dominated hypervolume (also known as Lebesgue measure [67] or S-metric [68])
maps a set of points in objective space to the size of of the region Pareto dominated
by that set. The hypervolume has to be bounded from below by a reference point,
which for the purposes of this paper will systematically be chosen to be the origin of
objective space. The dominated hypervolume simultaneously takes into account the
proximity of the points to the ideal Pareto front and their spread over the objective
space. For problems with less than five objectives, the dominated hypervolume can
be calculated exactly. However, for higher-dimensional multi-objective optimisation
problems, calculating the dominated hypervolume precisely can be computationally
expensive and hence a smorgasbord of efficient approximation methods [69, 70] for the
dominated hypervolume has been developed.

II.3.2 Internal Similarity
In comparing the performance of the different algorithms discussed in this paper,
it is useful to differentiate whether algorithms encourage a significantly different
amount of chemical diversity in their evolutionary populations. In cheminformatics,
similarity between two molecules is usually quantified based on metrics applied to binary
fingerprints that featurise chemical substructures. To calculate the diversity of molecules,
the pairwise similarity of each combination of molecules in a set has been traditionally
calculated using a binary similarity index, like the Tanimoto similarity [54, 55], and
summarised in an aggregate metric. However, the recent development of extended
similarity metrics [71, 72] enables the simultaneous and straightforward comparison of
an arbitrary number of bitvectors such as molecular fingerprints.

In this paper we make use of extended similarity indices to calculate and track the
internal similarity of evolutionary populations. Extended similarity metrics, which
compare a stack of bitvectors, have the advantage [71] that they do not require the full
similarity matrix of the compound pool or aggregate metric. In addition to being more
efficient, extended similarity metrics reduce to the traditional binary similarity metrics
if applied to a set of two molecules. According to computational experiments, two
newly proposed extended similarity metrics [72] are highly advantageous compared to
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Table II.2: The dominated hypervolume, maximum geometric mean, internal similarity,
and cumulative fitness calls after 150 generations, for seven multi-objective optimisation
tasks averaged over 20 runs of the GB-EPI, NSGA-II, and NSGA-III algorithms. Details
of the experimental setup for these results, including hyperparameters, construction
of the initial population, and chemical filters are discussed in subsection II.4. Mean
average values for each of the measures are given with standard deviations.

Algorithm Task Dominated Hypervolume Geometric Mean Internal Similarity Fitness Calls (Cumulative)
GB-EPI

Cobimetinib 0.77±0.05 0.93±0.01 0.50±0.00 13577±1224
Fexofenadine 0.67±0.07 0.87±0.03 0.50±0.00 17985±1398
Osimertinib 0.54±0.04 0.85±0.01 0.50±0.00 12982±1351
Pioglitazone 0.98±0.04 0.99±0.01 0.50±0.00 13160±3104
Ranolazine 0.46±0.04 0.81±0.02 0.50±0.00 16859±1537
DAP Kinases 0.03±0.05 0.46±0.06 0.51±0.00 23545±3150
Antipsychotics 0.09±0.02 0.57±0.06 0.51±0.00 21905±3073

NSGA-II
Cobimetinib 0.94±0.02 0.94±0.01 0.51±0.00 17784±1753
Fexofenadine 0.78±0.10 0.92±0.04 0.52±0.00 20268±2909
Osimertinib 0.66±0.03 0.89±0.01 0.52±0.00 16848±2655
Pioglitazone 1.00±0.00 1.00±0.00 0.51±0.00 19944±4765
Ranolazine 0.68±0.06 0.87±0.02 0.51±0.00 21259±2181
DAP Kinases 0.05±0.03 0.50±0.07 0.52±0.00 24350±3826
Antipsychotics 0.08±0.03 0.50±0.05 0.51±0.00 21246±1909

NSGA-III
Cobimetinib 0.92±0.03 0.93±0.02 0.51±0.00 14224±1807
Fexofenadine 0.79±0.00 0.91±0.03 0.52±0.01 12950±2326
Osimertinib 0.66±0.03 0.89±0.01 0.52±0.00 11052±2337
Pioglitazone 1.00±0.00 1.00±0.00 0.51±0.01 10639±2736
Ranolazine 0.63±0.06 0.85±0.02 0.51±0.00 17949±2732
DAP Kinases 0.04±0.02 0.48±0.07 0.51±0.01 22454±3440
Antipsychotics 0.05±0.03 0.49±0.04 0.52±0.01 32991±3473

the extended Tanimoto similarity: the extended Baroni-Urbani-Buser similarity index
and the extended Faith similarity index. Throughout this paper will make use of the
extended Faith similarity index.

II.4 Results

To increase the real-life relevance of the benchmarks used here, we run each
algorithm 20 times for 150 generations per benchmark. We also reject molecules
that either trigger the structural alerts from GSK [73], or those that contain ring
allenes, macrocycles, an abundance of hologenicity (#F > 6, #Br > 3, #Cl > 3),
rotatable bonds (>10) or hydrogen acceptors/donors (>10). In addition, the initial
populations used in this paper consist of a hundred molecules randomly sampled from
the Guacamol [13] subset of ChEMBL [35]. All these molecules are neutral, do not
contain salts and have Tanimoto similarities below 0.323 to any of ten FDA approved
drugs (Celecoxib, Aripiprazole, Cobimetinib, Osimertinib, Troglitazone, Ranolazine,
Thiothixene, Albuterol, Fexofenadine, Mestranol).

Based on previous work comparing single objective optimisation methods, we
choose GB-EPI (with geometric mean as surrogate fitness function) as a representative
baseline to compare against NSGA-II and NSGA-III. For GB-EPI, we choose four
medicinally relevant features of interest to span the archive: molecular weight (ranged
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from 140 to 555), log(P) (0.0 to 7.0), TPSA (0 to 140), and molar refractivity (40 to
130). For fair comparison, molecules exceeding these ranges are excluded from the
evolutionary populations of NSGA-II and NSGA-III during the benchmarks. Based
on previous experience with GB-EPI, the archive size for was set to 150 and the batch
size to 20. The archive size in quality-diversity algorithms, such as GB-EPI, is the
counterpart of the population size in traditional genetic algorithms. In general, the
batch size refers to the amount of molecules submitted to mutation and crossover per
generation. For NSGA-II, we used a population size of 100 (corresponding to the
initial population) and a batch size of 20. For NSGA-III, we used the same batch
size but experimentation guided us towards a smaller total evolutionary population:
we settled on the use 25 reference directions, and a population size of 35 molecules.
These hyperparameters were chosen to support global performance of each individual
algorithm without disrupting splitting procedures, as a consequence the amount of
fitness calls varies across algorithms and generations.

In Figure II.5 the evolution of the dominated hypervolume, maximum geometric
mean and internal similarity of the NSGA-II, NSGA-III, and GB-EPI algorithms is
shown for two representative benchmarks (Cobimentib and Fexofenadine). Throughout
the computational experiments GB-EPI, which optimises directly for the geometric
mean, is used as a baseline comparison method. As expected, NSGA-II and NSGA-III
successfully out-compete the GB-EPI baseline in terms of dominated hypervolume
for both benchmarks. In contrast to GB-EPI, the NSGA algorithms are designed
specifically to optimise the Pareto front, the quality of which is measured by the
dominated hypervolume. The geometric mean follows trends similar to the dominated
hypervolume in the benchmarks. However, the values of the maximal geometric mean lie
close to each other and the 95% confidence interval of GB-EPI overlaps with NSGA-II
and NSGA-III during the latter stages of the Cobimentib task.

An overview of the results for the multi-objective benchmarks is shown in Table
II.2 in terms of averages and standard deviations. NSGA-II and NSGA-III perform
better than the baseline on each of the benchmarks for both dominated hypervolume and
maximum geometric mean with the exception of the antipsychotics task. In that task,
similarity between the three receptor targets disadvantages NSGA-III due to its rigid
reference directions. For the Fexofenadine and Pioglitazone benchmarks, GB-EPI lies
within one standard deviation of either NSGA-II or NSGA-III for both metrics. Note
that to obtain the global maximum geometric mean of these benchmarks or the global
optimum of one of the objectives, direct optimisation should be used. In principle, Pareto
optimisation algorithms should reach these types of global optima, but significantly less
efficiently as the evolutionary population is spread out over objective space. Conversely,
when using a single aggregation function, the solutions tend to lie close to each other in
objective space, and don’t cover the entirety of the Pareto front.

To study the comparative efficiency of each algorithm, we track the cumulative
number of function calls over the full 150 generations for the twenty individual runs
of each algorithm. This has the advantage that it does not interrupt the splitting front
procedure, as might be the case when working with a fixed and limited function call
budget. An overview of the mean and standard deviation of the cumulative fitness calls
of each algorithm is shown in Table II.2. NSGA-III consistently outperforms NSGA-II
in terms of efficiency, and is more efficient than GB-EPI in all benchmarks where they
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have similar performance for dominated hypervolume and geometric mean. In contrast
to single objective optimisation problems, where a lower internal similarity has been
regarded as beneficial, for multi-objective optimisation the algorithms which encourage
greater internal similarity are better performing.

II.5 Conclusion and Outlook

This paper introduces two novel open-source and graph-based implementations of non-
dominated sorting genetic algorithms, NSGA-II and NSGA-III, for small molecule
multi-objective optimisation. The performance of these algorithms is compared to
a single objective quality-diversity algorithm (GB-EPI) on four metrics: dominated
hypervolume, maximal geometric mean, internal similarity and efficiency. Previous
benchmarks for generative models of small molecules focused on the maximal geometric
mean as a sole aggregate indicator of success in multi-objective optimisation. However,
the Pareto front – the collection of optimal points in objective space – is not solely
characterised by the geometric mean of a single molecule. In this paper we show that
the size of the hypervolume dominated in objective space (with respect to the origin) is
a useful, often more discriminative, alternative metric in generative model benchmarks.

The performance of NSGA-II and NSGA-III for graph-based optimisation of
molecules is encouraging. Both algorithms specialise in finding the optimal Pareto
front and our benchmarks show that this approach is superior compared to GB-EPI
(which optimises the geometric mean directly). In line with analyses of purely numerical
benchmarks found in the literature, NSGA-III does not always outperform NSGA-II
in our chemical benchmarks, indicating that the two algorithm produce similar results
according to this metric. Throughout all the benchmarks presented in this paper however,
NSGA-III seems to be the most efficient in its use of function calls. Notably, and in
contrast to single objective optimisation, the higher performing algorithms NSGA-II and
NSGA-III have a higher and faster increasing internal similarity in their evolutionary
populations than the baseline.

The above discussed efficiency, performance, and flexibility of the graph-based
implementations of NSGA-II and NSGA-III for small molecule multi-objective
optimisation as provided with this paper, allows the community to use these algorithms
for practical use. In addition, these implementations can be used as future baselines and
as starting points for future developments in this field. One such possible development
would be to further reduce the amount of function calls through the use of contextual
multi-armed bandits [74], or Gaussian processes [75] to prune the amount of molecules
presented to the evaluation step of the algorithms. Finally, the algorithms presented
here can be integrated into the workflow for multi-objective tasks given to self-driving
laboratories [76] or other set-ups making use of active learning [77].

Data Availability

Full code for the implementations of NSGA-II and NAGA-III is available at: https:
//github.com/Jonas-Verhellen/MolecularGraphPareto.
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Abstract

Understanding the operating principles underlying the electrical activity of the
human brain requires integrated research efforts at the molecular, cell, circuit,
and systems levels. To study local neural circuits, computationally expensive
simulations of biophysically-detailed neuron models can be employed. Recent
innovations have shown that it is possible to accurately predict the biophysical
behaviour of detailed neuron models with artificial neural networks (ANN) in terms
of spikes, electrical potentials and optical readouts. While these methods have the
potential to accelerate large network simulations with several orders of magnitude
compared to conventional differential equation-based modelling, they currently only
predict outputs for the soma or a few chosen neuron compartments. Based on state-
of-the-art ANN architectures for multi-task learning (MTL), we present a novel
approach allowing for the simultaneous prediction of membrane potentials in each
compartment of a neuron model. In addition to providing the necessary information
to calculate local field potentials, learning all membrane potentials simultaneously
also serves as a challenging benchmark for MTL architectures due to the presence
of correlations between membrane potentials in neighbouring compartments and
the non-Gaussian distribution of membrane potential values in general.
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III.1 Introduction

In the seven decades since Hodgkin and Huxley’s original description of the action
potential in terms of ion channel gating [1–7], the scientific community has developed
a rather comprehensive understanding of how individual neurons process information.
Neurons receive thousands of synaptic inputs in dendritic branches where inputs
interact with a plethora of local non-linear processes to culminate in the soma which, if
sufficiently depolarised, triggers the generation of an action potential. The behaviour of
large networks of neurons, however, remains poorly understood. Qualitative insights
can be gleaned from statistical correlations between recorded neural activity and sensory
stimulation or animal behaviour as seen in experimental studies [8–11]. Unfortunately,
these correlations offer little information on how networks of neurons perform neural
computation or how these networks give rise to neural representations. Mechanistic
modelling, in which detailed neuron models or networks of detailed neuron models are
simulated on a computer, offers an alternative approach to study the network dynamics
of neural circuits [12, 13].

For a long time, the computational exploration of networks of neurons mimicking
entire cortical areas was deemed practically unfeasible due to the extraordinary
associated computational cost. A series of relatively recent pioneering efforts, facilitated
by large supercomputers, paved the way for this type of neuroscience by constructing
simulations containing tens of thousands of model neurons to mimic specific cortical
columns in mammalian sensory cortices [14–18]. Even more recent advances have
reduced the need of supercomputers for large simulations of detailed neuron networks,
by distilling the output of biophysically-detailed neuron models into easier-to-evaluate
artificial neural networks (ANN). Previous work focused on predicting outgoing action
potentials (i.e. spikes) or other experimental variables (membrane potentials, specific
ion currents or optical readouts) in a limited number of compartments [19, 20]. In this
paper, we expand on these approaches by simultaneously predicting the presence of an
action potential and the membrane potentials for all compartments.

By predicting outgoing action potentials and membrane potentials across the
biophysically-detailed neuron model simultaneously, we have made the transition from
single-task learning to heterogeneous multi-task learning (MTL). In contrast to single-
task learning, heterogeneous MTL does not train a separate model for each target
but optimises a single neural architecture to predict multiple heterogeneous targets
simultaneously. In our work, task heterogeneity manifests itself as the difference
between regression tasks on one hand, i.e. membrane potential predictions, and the
binary classification task for the prediction of action potentials on the other hand. MTL
approaches aim to leverage statistical relationships between multiple targets to improve
generalisation and efficiency across tasks [21–25]. To capture shared patterns that could
be missed in single-task learning, multi-task learning generally relies on either one of
two categories of neural architectures, respectively known as hard parameter [26] and
soft parameter sharing models [27].

Hard parameter sharing models for MTL consist of a shared bottom and task-specific
output branches whereas soft parameter sharing models make use of dedicated sets of
learning parameters and feature mixing mechanisms. In this paper, we apply a single
type of hard parameter sharing model and two types of soft parameter sharing models

118



Results

(MMoE [28] and MMoEEx [29]) to the challenge of distilling the full electrophysiology
of a biophysically-detailed layer 5 pyramidal neuron model [30]. Specific details of the
MTL architectures used in this study can be found in the methods and materials section.
Importantly, we found that the soft parameter sharing models substantially outperform
the hard parameter sharing model on this task. In addition, we tracked the development
of diversity in the internal representations of the soft parameter sharing models during
training. In the future, we will investigate the importance of different aspects of the
training regime with regard to task-balancing and the generalisation properties of several
optimisation schemes.

III.2 Results

To test the capability of different MTL architectures in accurately representing the full
dynamic membrane potential of each compartment of a large biophysically-detailed
neuron model, we trained the architectures on a balanced dataset of simulated neural
activity. For each target (a collection of membrane potentials and the presence or absence
of an outgoing action potential) in the dataset, we provide a 100 ms history of neural
activity and synaptic inputs from all compartments of the biophysically-detailed neuron
model to the MTL models. Further details regarding the dataset and pre-processing
steps can be found in the methods and materials section. To facilitate a fair comparison
between MTL methods, we constructed a hard parameter sharing model (14 million
trainable parameters, 27.930 MB) that is close in size to the soft parameter sharing
models (12 million trainable parameters, 23.918 MB). Similarly, we used the same
training procedures for each of the models (Adam [31] without task-balancing) and
evaluated the inference speed in a single session on publicly available hardware.

III.2.1 Multi-Task Prediction of Membrane Potential Dynamics in
Biophysically-Detailed Neuron Models

After training all three MTL models, we observed that the soft parameter sharing models
strongly outperformed the hard parameter sharing model both in terms of training and
generalisation loss, see Figure III.1. During training, the hard parameter model reached
a training loss of 0.439 and a validation loss of 0.680, the MMoE model reached a
training loss of 0.241 and a validation loss of 0.533, and the MMoEEx model reached
a training loss of 0.262 and a validation loss of 0.551. The MMoE model, saved at its
best validation performance, predicts the membrane potential of a compartment up to an
average accuracy of 3.77 mV. Unfortunately, with the current set of hyperparameters in
the loss function (γ = 1, wi = wspike = 1), all of the explored models prioritise learning
the membrane potentials of the compartments of the neuron model over learning an
accurate prediction of spike generation in the soma.
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Figure III.1: Training loss (left) and validation loss (right) of the hard parameter model,
the MMoE model, and the MMoEEx model.

III.2.2 Measuring Experts Diversity in MMoE and MMoEEx
Trained on Neural Data

In previous work on soft parameter sharing models, it has been argued that a higher
diversity among experts could, in some cases, lead to an improvement in training and
generalisation results for heterogeneous MTL [28, 29]. To analyse the influence of expert
diversity on the soft parameter sharing models presented in this paper, we computed
several diversity metrics during and after the training of the MMoE and MMoEEx
models. In addition to the diversity score, which was previously introduced as a measure
of expert diversity, we also tracked the determinant and permanent of the standardised
distance matrix between experts. While MMoEEx was originally introduced to the
literature as a method to induce more diversity among experts, for the task at hand
however, we observed that the MMoEEx expert diversity converged to a lower value
than the final MMoE expert diversity in all three of our measures. Curiously, for both
models the diversity measures initially increase and afterwards either stabilise (in the
case of MMoE) or reduce to down below their initial values (in the case of MMoEEx),
see the middle panel of Figure III.2.

The distances between the experts in MMoE and MMoEEx, at the end of the training
procedure, are presented in the heatmaps at the top of Figure III.2. It is important to
note that, the MMoEEx model has an additional hyperparameter α , which controls the
number of tasks each expert participates in. For the present task, α was set to 0.1, which
means that each expert of MMoEEx learns a representation that can contribute to 90%
of the tasks. It is possible that after a thorough hyperparameter scan, a value of α can
be found for which the MMoEEx model outperforms MMoE. Finally, given the large
number of partially correlated tasks in the distillation of a biophysically-detailed neuron
model, we were in an unique position to explore how individual experts in MMoE
and MMoEEx contribute to correlated prediction tasks. In both models, we observe
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correlations between the mean weights projected from each expert to each compartment
for neighbouring compartments, see bottom panel of Figure III.2. Finally, it is also
worth noting that despite the difficulties in successfully predicting somatic spikes, this
task receives high average weights from some of the experts in MMoEEx.

III.2.3 Ultra-fast Simulation of Full Membrane Potential Dynamics
of Multiple Cells

Traditional simulation environments such as NEURON rely on numerical integration
of compartment-specific differential equations that represent the active and passive
biophysical mechanisms of the modeled neuron. This approach requires a significant
amount of computational resources and one of the main attractive features of distilling
biophysically-detailed neuron models into ANNs is the significant reduction in
simulation runtimes deep learning architectures provide. Previous work from the
literature, where only the output of a limited number of compartments was predicted,
has already shown that NEURON simulations of biophysically-detailed neuron models
are significantly slower than their ANN counterparts. Especially in simulations
with multiple neurons where accelerators like GPU’s can be used to parallel process
independent timesteps of the model. In practice, the batch-size of the MTL models
during inference equals the amount of timesteps individually evaluated in parallel and
can be most easily interpreted as the amount of model neurons being evaluated at the
same time.

In Table III.1, we recorded the mean and standard deviation runtimes of seven
independent simulations for each of the three MTL models. Note that each simulated
timestep is independent of the others and that the simulation time presented in the
table is cumulative. So, according to the previously mentioned interpretation, we have
simulated 100 ms of single neuron model, simultaneous 1 ms simulations for a 100
neurons and simultaneous 10 ms simulations for 100 neurons. Clearly, being able to
evaluate the MTL models in parallel on a GPU has a significant effect on runtimes: a
1000 ms of simulation time (spread over a 100 neurons) can be predicted in near real
time by the hard parameter sharing model. MMoE and MMoEEx have similar inference
runtimes, but are significantly slower than the hard parameter sharing model. This is
likely due to the lower amount of convolutions filters in the hard parameter sharing
model and the presence of large matrix multiplications in the gates of the soft parameter
sharing models.

III.3 Discussion

III.3.1 Advantages and Limitations of Multi-task Learning in
Distilling Biophysically-Detailed Neuron Models

We explored the capacity of three state-of-the-art MTL neural network architectures [26,
28, 29] in the distillation of the complex membrane potential dynamics of a multi-
compartment, biophysically-detailed model of a layer 5 pyramidal neuron [30]. Given
the fact that the biophysical model under study has 639 compartments, this is an
unusually challenging MTL problem. The current results, as reported here, are

121



III. Multi-Task Learning of Biophysically-Detailed Neuron Models

Figure III.2: Top - Heatmaps of the distances between the experts in the MMoE
(d̄1 = 0.68, d̄2 = 1.57, and d̄3 = 451.63) and MMoEEx (d̄1 = 0.45, d̄2 = 0.09, and
d̄3 = 47.69) models. Middle - Smoothed diversity measures (colours) for MMoE
(left) and MMoEEx (right) shown together with the corresponding raw values (grey).
Bottom - Smoothed curves (dark colours) of the average weights projecting from the 5
experts to the towers for MMoE (top) and MMoEEx (bottom) shown together with the
corresponding raw values (light colours). The final average weight value represents the
tower responsible for the binary prediction of a spike in the soma.
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Table III.1: Inference Speed of the Three MTL Architectures after Training on Neural
Data Generated by a Biophysically-Detailed Model of a Layer 5 Pyramidal Neuron.

Runtime (s) Std. Dev. (ms) Model Hardware Datapoints Batch Size

21.2 287 MMoE CPU 100 1
21.4 361 MMoEEx CPU 100 1
7.50 284 Hard Parameter CPU 100 1
20.4 120 MMoE GPU 100 1
20.3 217 MMoEEx GPU 100 1
7.83 286 Hard Parameter GPU 100 1
0.30 3.25 MMoE GPU 100 100
0.31 2.24 MMoEEx GPU 100 100
0.19 12.4 Hard Parameter GPU 100 100
2.10 89.7 MMoE GPU 1000 100
2.18 164 MMoEEx GPU 1000 100
0.98 205 Hard Parameter GPU 1000 100

encouraging. The MMoE model with the lowest validation loss has a mean average
error of 3.77 mV in membrane potential prediction across all compartments. This mean
average error is well below the standard deviation of experimentally measured action
potential peak membrane voltages in layer 5 pyramidal neurons during perisomatic step
current firing (4.97 mV - 6.93 mV) or back-propagating action potential Ca2+ firing (5
mV) [30, 32]. One point worth noting is that, up to now, all the trained models failed to
learn the binary prediction of somatic spikes. This issue can potentially be addressed
by increasing the value of the hyperparameter γ and hence giving more weight to this
specific task during learning.

Further exploration of the soft parameter sharing models through the use of task
balancing methods, as discussed in the methods and materials section, might improve
upon the results obtained so far. Hard parameter sharing models typically do not benefit
from task balancing approaches. Experimental recordings of the after-hyperpolarization
depth of the membrane potential in the soma of layer 5 pyramidal neurons have a slightly
lower standard deviation (3.58 mV - 5.82 mV) than electrophysiological measurements
of action potentials [30, 33, 34], indicating that a more sensitive evaluation of distilled
neuron models could be based on their performance in specific neuronal scenario’s.
It is also important to note that one expected use-case of these MTL models is in the
acceleration of LFP calculations where it is well known that the low frequency aspects of
membrane potential dynamics matter most [35–37]. In conclusion, it seems that distilled
biophysically-detailed neuron models, while already effective, could be improved based
on bespoke neuroscience-based metrics rather than those regularly used in deep learning.

III.3.2 Measuring Experts Diversity in MMoE and MMoEEx
Trained on Neural Data

To test the conjecture that in soft parameter sharing MTL models high diversity between
experts can be beneficial in training and generalisation, we computed several diversity
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measures. Indeed, the model with highest diversity (MMoE) performed the best, despite
the fact that unlike its counterpart (MMoEEx), it has no explicit inductive bias towards
expert diversity. Further exploration of the exclusivity hyperparameter α might lead to
more desirable results for the MMoEEx model. Additionally, increasing the number of
experts should only lead to improvements in training and generalisation if a substantial
amount of independence between the tasks had not yet been incorporated. Given the
low dimensionality of the data used in this project, as described in the methods and
materials section, it is unlikely that our current MTL problem would benefit appreciably
from a higher number of experts. Future work can make these statements more precise
by studying the contribution of individual experts to prediction of membrane potentials
in morphologically distinct neuronal compartments.

III.3.3 Hardware Acceleration of Distilled Neuron Models and
Simulation Runtimes

Biophysically-detailed neuron models distilled into ANNs can be evaluated at
significantly higher speeds than their classical counterparts. Because a single instance of
a deep learning model can be used to predict outputs for multiple instances of the same
neuron model in parallel, on accelerators such as GPUs, these models are deemed to be
particularly suited to accelerating large networks of model neurons. The biophysically-
detailed model of the mouse V1 cortical area developed by the Allen Institute [38],
for instance, could be accelerated by 114 deep learning models each representing one
model neuron type. The current biophysically-detailed Allen V1 model makes use of
neuron models with passive dendrites which should be significantly easier to distil into
an MTL architecture than the layer 5 pyramidal neuron model represented here. Further
acceleration of the MTL models discussed in this paper could be achieved by running
model inference on multiple GPUs or more advanced accelerators such as TPUs and
IPUs.

III.4 Methods

III.4.1 Multi-compartmental NEURON Simulations and Data
Balancing

As a baseline for training and testing, we used an existing dataset of electrophysiological
data generated in NEURON [19] based on a well-known biophysical-detailed and multi-
compartment model of cortical layer V pyramidal cells [30]. This model contains a
wide range of dendritic (Ca2+-driven) and perisomatic (Na+-driven) active properties
which are represented by ten key active ionic currents that are unevenly distributed over
different dendritic compartments. The data was generated in response to presynaptic
spike trains sampled from a Poisson process with additional temporal variety due to
resampling. For the purposes of this paper, it is important to note that the biophysical-
detailed model contains 639 compartments and 1278 synapses and that 128 simulations
of the complete model for 6 seconds of biological time each were included before data
balancing.
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The subthreshold dynamics of the membrane potential in a compartment have
weak variance and as a result one would expect them to be easy to predict. However,
suprathreshold deviations generated by dendritic spiking events can be more problematic
to predict. To address this issue, we implemented a form of data balancing. We first
identified the time points at which somatic spikes occurred and afterwards we used
them to create a dataset in which one third of the targets included a spiking event.
Additionally, we standardised the membrane potential through z-scoring. Principal
components analysis on the target data showed that the largest 5 principal components
explain 88% of the variance in the data. We used input data consisting of membrane
potentials and incoming synaptic events across all compartments during a 100 ms time
window, and target data consisting of 1 ms of membrane potentials and a binary value
for the presence or absence of a somatic spike.

III.4.2 Hard and Soft Parameter Sharing Architectures for
Multi-task Learning

To learn spatiotemporal relationships between neural inputs and outputs (synaptic events
and voltage traces), we make use of a generic temporal convolutional network (TCN)
architecture [39]. Whereas learning on sequence tasks is often associated with recurrent
architectures [40, 41] such as GRU’s and LSTM’s, previous research has shown that
certain convolutional architectures can outperform canonical recurrent networks on
tasks such as audio synthesis, language modelling, and machine translation without
suffering from the vanishing gradient problem or a lack in memory retention. A TCN
is a standard one-dimensional convolutional network endowed with a causal structure
that has been used previously to learn representations of neural data. The causality in a
TCN is guaranteed, layer by layer, by solely applying causal convolutions and adding
appropriated zero-padding and dilation. In this work, we use a TCN architecture to learn
representations to feed into hard and soft parameter sharing architectures for multi-task
learning.

One of the initial works discussing modern multi-task learning makes use of hard
parameter sharing through shared initial layers of the neural network architecture ("the
bottom") and top layers ("the towers") which are task-specific. This approach has
the advantage of scaling well with the number of tasks but the disadvantage that the
shared representation learned by the bottom can become biased towards the tasks with
a strong loss signal. To improve on hard parameter sharing, soft parameter sharing
architectures make use of dedicated representations for each task. In this paper, we
use the multi-gate mixture-of-experts (MMoE) [28] and multi-gate mixture-of-experts
with exclusivity (MMoEEx) [29] architectures as soft parameter sharing models. These
models combine representations learned by several shared bottoms ("the experts")
using gating functions, which apply linear combinations based on learnable and data-
dependent weights. MMoEEx expands on MMoE by forcing a random subsection of
these weights to be zero to encourage diversity among the representations provided by
the experts.

We use a three layered TCN (32, 16, and 8 channels respectively) with a kernel
size of 10 and a dropout of 0.2 for the bottom architecture and for each of the expert
architectures. For each of the towers we use three-layered feed-forward networks with
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Figure III.3: Schematic representation of the architectures of the hard parameter model
(left), the MMoE model (middle), and the MMoEEx model (right).

ELU activation functions and 10 (soft parameter sharing) or 25 (hard parameter sharing)
hidden nodes each. We replace the final RELU activation function in the original TCN
implementation with a sigmoid activation function for increased stability. For the soft
parameter sharing models, we added in an extra TCN expert, see Figure III.3, that
compresses the data before feeding it into the gating functions to avoid quadratic growth
of the trainable parameters with respect to the size of the input data (time-window length
times the amount of features). Based on the previously discussed principal component
analysis of the target data, we chose to use 5 experts for both MMoE and MMoEEx in
the numerical experiments presented in this paper. To facilitate efficient training, we
implemented mixed precision and multi-GPU training for all three models. All models
were trained on (up to 6) parallel RTX2080Ti GPUs, while inference experiments were
performed on Tesla P100 GPUs, which are publicly available through Kaggle.

III.4.3 Task Balancing and Expert Diversity
Effective multi-task learning typically requires some form of task balancing to reduce
negative transfer or to prevent one or more tasks from dominating the optimisation
procedure. To avoid these issues we make use of loss-balanced task weighting
(LBTW) [42] which dynamically updates task weights in the loss function during
training. For each batch, LBTW calculates loss weights based on the ratio between the
current loss and the initial loss for each task, and a hyperparameter ξ . As ξ goes to
0, LBTW approaches standard multitask learning training. All taken together, the loss
function can be summarised as

L(ŷ,y) = Lspike(ŷspike,yspike)+
N

∑
i=0

Li(ŷi,yi) , (III.1)
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or equivalently,

L(ŷ,y) = wspike · γ ·BCElogits(ŷspike,yspike)+
N

∑
i=0

wi ·MSE(ŷi,yi) , (III.2)

where ŷ and y are the target and the predicted data respectively, wspike and wi are the
task weight, γ is a hyperparameter that determines the importance of spike prediction,
BCElogits is the binary cross entropy loss combined with a sigmoid activation function,
and MSE is the mean square error. The summation index i runs over all N compartments
of the biophysically-detailed neuron model, and the LBTW task weights are recalculated
every epoch E, for each batch B, according to

wspike =

(
Lspike,E,B(ŷspike,yspike)

Lspike,E,0(ŷspike,yspike)

)ξ

and wi =

(
Li,E,B(ŷi,yi)

Li,E,0(ŷi,yi)

)ξ

. (III.3)

During training of the different multi-task methods, we consistently made use of a
batch-size of 32 data points. To explore different optimisation methods we tested both
Adam [31] with a starting learning rate of 0.001 and a weight decay (i.e. L2 penalty) of
0.0001, and SGD with warm restarts using a cosine annealing schedule [43] defined by

ηt = ηmin +
1
2
(ηmax−ηmin)

(
1+ cos

(
Tcur

Ti
π

))
(III.4)

where ηmax is the initial learning rate, Tcur is the number of epochs since the latest restart
and Ti is the number of epochs between two restarts. When Tcur = Ti in this annealing
schedule, we set ηt equal to ηmin and when Tcur is set to 0 after a restart, we also set ηt
equal to ηmax. For the SGD optimiser itself, we use a starting learning rate of 0.05 and a
weight decay of 0.0005. We set the dampening to 0, and the Nesterov momentum [44]
to 0.9.

To measure the diversity in expert representations in MMoE and MMoEEx, we
made use of diversity measurement proposed in the original MMoEEx paper. In that
paper, the diversity between two experts n and m is calculated as a (real-valued) distance
d(n,m) between the learned representations fn and fm, as defined by

d(n,m) =

√
N

∑
i=0

( fn(xi)− fm(xi))2 , (III.5)

where N is the number of samples xi in the dataset (often the validation dataset) which
is used to probe the diversity of the experts. The diversity matrix D of a trained MMoE
or MMoEEx model is defined by calculating all pairwise distances between expert
representations as described above and normalising the matrix. In this normalised
matrix, a pair of experts with distance close to 0 are considered near-identical, and
experts with a distance close to 1 are considered to be highly diverse. To compare two
different models in terms of overall diversity, we respectively define the first, second,
and third diversity scores of a model as the mean entry (d̄1) and the determinant (d̄2),
and the permanent (d̄3) of its diversity matrix D.
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III.5 Data and Code Availability

Pre-processed neural data, numerical results, complete computational workflows, and
the weights of the trained MTL networks will be made publicly available together with
the completed version of this manuscript.
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